

AFRL-IF-RS-TR-2003-29
Final Technical Report
February 2003

TOOLS FOR ASSEMBLING AND MANAGING
SCALABLE KNOWLEDGE BASES

University of Southern California

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. F109

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

 AFRL-IF-RS-TR-2003-29 has been reviewed and is approved for publication.

APPROVED:
RAYMOND A. LIUZZI

 Project Engineer

 FOR THE DIRECTOR:

JAMES A. COLLINS, Acting Chief
Information Technology Division
Information Directorate

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 074-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
FEBRUARY 2003

3. REPORT TYPE AND DATES COVERED
Apr 97 – May 02

4. TITLE AND SUBTITLE
TOOLS FOR ASSEMBLING AND MANAGING SCALABLE KNOWLEDGE
BASES

6. AUTHOR(S)
Hans Chalupsky

5. FUNDING NUMBERS
C - F30602-97-1-0194
PE - 62301E
PR - IIST
TA - 00
WU - 09

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Southern California
Information Science Institute
4676 Admiralty Way
Marina Del Rey California 90292

8. PERFORMING ORGANIZATION
 REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Defense Advanced Research Projects Agency AFRL/IFTB
3701 North Fairfax Drive 525 Brooks Road
Arlington Virginia 22203-1714 Rome New York 13441-4505

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2003-29

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: Raymond A. Liuzzi/IFTB/(315) 330-3577/ Raymond.Liuzzi@rl.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)
The DARPA High Performance Knowledge Base (HPKB) program was aimed to produce technology to rapidly construct
large, reusable, and maintainable ontologies and knowledge bases (KBs). To achieve this goal, large-scale KBs cannot
always be built from scratch, but instead need to be assembled as much as possible from existing resources. Reuse,
however, does not come for free: reusable material has to be identified, translated, adapted, debugged, merged with
other material and maintained, all of which can be very difficult and expensive processes. Therefore, for reuse to be
effective, it has to be supported by a set of adequate knowledge base construction, editing and maintenance tools.
This report describes an HPKB effort that built a variety of tools and infrastructure aimed at supporting the ontology and
knowledge base construction process. All these tools are centered around the PowerLoom Knowledge Representation
and Reasoning (KR&R) system (http://www.isi.edu/isd/LOOM/PowerLoom), which is a highly expressive, logic-based
KR&R system with multiple built-in deductive reasoning capabilities including a query processor, a description classifier,
and a context mechanism. The developed tools cover various areas of the knowledge base and ontology construction
process and are outlined in the report.

15. NUMBER OF PAGES
85

14. SUBJECT TERMS
Computers, Knowledge Base, Artificial Intelligence, Software, Reasoning

16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UNCLASSIFIED
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

 i

Table of Contents

1 TOOLS FOR ASSEMBLING AND MANAGING SCALABLE KNOWLEDGE
BASES ...1

1.1 Knowledge Translation .. 1

1.2 Browsing and Editing... 2

1.3 Learning and Partial Inference ... 3

1.4 Large-scale Persistent Storage and Scalable Inference... 4

1.5 Other Tools ... 6

2 THE ONTOMORPH TRANSLATOR FOR SYMBOLIC KNOWLEDGE8

2.1 Introduction .. 8

2.2 The Translation Problem... 9

2.3 Dimensions of Mismatch.. 10

2.4 OntoMorph ... 12
2.4.1 Syntactic Rewriting .. 12
2.4.2 Semantic Rewriting .. 18

2.5 OntoMorph Applications ... 20
2.5.1 Course of Action Critiquer ... 20
2.5.2 Rosetta Agent Translation Service.. 24

2.6 Related Work.. 27

2.7 Future Work: Ontology Merging.. 28

3 DETERMINING DECISIVE POINTS THROUGH CASE-BASED REASONING
..30

3.1 Overview.. 30

3.2 The Decisive Point Problem... 31
3.2.1 Problem Description ... 31
3.2.2 A Case-Based Reasoning Solution ... 32
3.2.3 Technical Hurdles... 34

3.3 Knowledge-Rich Case-Based Reasoning .. 36
3.3.1 Generating Match Criteria .. 38
3.3.2 Building Semantic Signatures... 41
3.3.3 Incorporating Rule Knowledge... 44

3.4 Evaluation ... 45

 ii

3.5 Conclusions ... 48

4 JAVA-BASED GRAPHICAL KNOWLEDGE EDITOR50

4.1 Overview.. 50

4.2 Architecture .. 50
4.2.1 Client/Server Architecture .. 50
4.2.2 GUI Design Goals... 51

4.3 GUI Overview ... 55

4.4 GUI Features... 58
4.4.1 Connect to Server ... 58
4.4.2 Edit Preferences .. 58
4.4.3 KB Load/Save... 59
4.4.4 Browsing... 59
4.4.5 Editing/Viewing.. 64
4.4.6 Choosers ... 67
4.4.7 Extension Editor ... 68
4.4.8 Query/Ask... 70
4.4.9 Search ... 71
4.4.10 Console ... 72
4.4.11 Cut/Copy/Paste/Delete.. 73

4.5 Future Work ... 74
4.5.1 Large KBs... 74
4.5.2 Drag/Drop... 74
4.5.3 Scrapbook ... 74
4.5.4 Instance cloning .. 75
4.5.5 Security... 75
4.5.6 Multiple users ... 75

5 REFERENCES ..76

 iii

List of Figures

Figure 1: OntoSaurus browser for PowerLoom knowledge bases...................................... 3
Figure 2: The knowledge translation problem. ... 9
Figure 3: Syntax tree representation of f(g([x],y)) ... 13
Figure 4: Case-based Reasoning High Level Algorithm. In the decisive point problem, x

refers to a decisive point description and f(x) refers to the goodness of the decisive
point. ... 33

Figure 5: A partial decisive point description... 35
Figure 6: Decisive point algorithm ... 37
Figure 7: A generalized knowledge structure. Variables are substituted for all non-leaf

instances.. 39
Figure 8: An example of structure folding in GSA. The figure illustrates folding three

different knowledge structures into one unified structure. The first structure is
simply copied to the empty unified structure. In the second example, variable ?V4 is
unified with variable ?V1, since they both share the relation r1 from ?X. 40

Figure 9: Transformation of a structural case into a floating point signature................... 42
Figure 10: Learning curves for different variations of the case-based reasoner............... 47
Figure 11: The PowerLoom GUI.. 55
Figure 12: Knowledge Browser .. 60
Figure 13: Instance Editor... 65
Figure 14: Proposition Editor.. 67
Figure 15: Extension Editor .. 68
Figure 16: Query Dialog ... 69
Figure 17: Search Dialog .. 71
Figure 18: PowerLoom Console ... 73

List of Tables

Table 1: Results from the HPKB evaluation. Scores range from 0 to 100. 46

 1

1 Tools for Assembling and Managing Scalable
Knowledge Bases
The HPKB program was aimed to produce technology to rapidly construct large,

reusable, and maintainable ontologies and knowledge bases (KBs). To achieve this goal,

large-scale KBs cannot always be built from scratch, but instead need to be assembled as

much as possible from existing resources. Reuse, however, does not come for free:

reusable material has to be identified, translated, adapted, debugged, merged with other

material and maintained, all of which can be very difficult and expensive processes.

Therefore, for reuse to be effective, it has to be supported by a set of adequate knowledge

base construction, editing and maintenance tools.

As part of our participation in HPKB we built a variety of tools and infrastructure aimed

at supporting the ontology and knowledge base construction process. All these tools are

centered around the PowerLoom knowledge representation and reasoning (KR&R)

system (http://www.isi.edu/isd/LOOM/PowerLoom), which is a highly expressive, logic-

based KR&R system with multiple built-in deductive reasoning capabilities including a

query processor, a description classifier, and a context mechanism. The developed tools

cover various areas of the knowledge base and ontology construction process and are

outlined in more detail below.

1.1 Knowledge Translation
As mentioned above, reuse is a very important prerequisite for being able to build large,

high performance knowledge bases as quickly as possible. However, relevant ontologies

and knowledge bases that could be reused are often formulated in a different knowledge

representation language than the one that is required, use different or incompatible

modeling conventions, or need to be semantically altered or “morphed” to fit with the

newly developed knowledge base. Therefore, one needs a powerful translation tool that

allows one to easily translate and adapt reusable knowledge into the required format

before it can be integrated with other parts of the new knowledge base.

To support this part of the ontology and knowledge base construction process, we built

the OntoMorph translation tool for symbolic knowledge. OntoMorph provides a

 2

powerful rule language to represent complex syntactic transformations, and it is fully

integrated with the PowerLoom KR&R system to allow transformations based on any

mixture of syntactic and semantic criteria. Within HPKB, OntoMorph was first

successfully applied as the input translator for the course of action critiquing system

developed by the Expect group at USC ISI. Since then it has been used in other

applications such as a translation service for agent communication as well as file-based

and dynamic CycL to PowerLoom translators. Details of OntoMorph are described in

Section 2, which also motivates how OntoMorph can be used to support knowledge base

merging tasks.

1.2 Browsing and Editing
Another important part of the knowledge base construction process are powerful

browsing and editing tools. These tools enable the knowledge engineer to easily navigate

through potentially very large ontologies and knowledge bases, visualize and understand

their structure and then make any necessary modifications.

To support the browsing process, we adapted the Web-based OntoSaurus knowledge base

browser [Swartout et. al, 1996] to be able to display and navigate through PowerLoom

knowledge bases. OntoSaurus was initially developed for the Loom KR&R system

(PowerLoom’s predecessor) which is a description logic system and uses a representation

language quite different from the one used by PowerLoom. Therefore, we had to

reimplement OntoSaurus to work with PowerLoom knowledge bases. The new version

of OntoSaurus was written in the STELLA programming language [Chalupsky &

MacGregor, 1999] which allows us to deliver it in Lisp, C++ and Java versions. A screen

shot of OntoSaurus displaying parts of a PowerLoom knowledge base is shown in

Figure 1.

A browsing tool is of course not enough, one also needs to be able to edit and modify the

knowledge base. To that end, we built a completely new Java-based knowledge base

editing tool for PowerLoom. While initially we planned to extend OntoSaurus with the

required editing functions, we finally decided to implement the editor directly in Java,

since that gives much higher flexibility, better support for complex editing functions such

as context dependent cut and paste, completion, etc. Using new technology such as Java

 3

WebStart, we can continue to give users the ability to launch the interface by simply

using their Web browser while still reaping the flexibility benefits of writing the editor

directly in Java. More details of the Java-based knowledge editor are described in

Section 4.

Figure 1: OntoSaurus browser for PowerLoom knowledge bases.

1.3 Learning and Partial Inference
Most commonly, new knowledge bases are built by knowledge engineers by explicitly

modeling all relevant aspects of a particular domain. Even if this process is accelerated

by reusing some already existing knowledge bases, it still requires the knowledge

engineer to have a sufficient understanding of the domain to be able to construct a

 4

knowledge base that is correct and useful. However, this understanding of the domain is

not always easy to come by, in particular, if the domain knowledge is expertise and skill

experts acquired over the course of their career.

While experts often have difficulty articulating how the domain should be modeled and

what exactly they base their decisions on, they are usually very good in providing

examples of relevant scenarios. To be able to exploit knowledge provided in the form of

examples, we developed the KILTER tool set. KILTER is built on top of PowerLoom

and provides a set of tools such as a neural-network-based learner for weights and weight

combination over logic rules, a rule induction engine and a case-based reasoner that can

each be used to exploit knowledge provided in the form of examples or cases. A central

ingredient of all these tools is a special partial inference engine built on top of

PowerLoom’s backward chaining reasoner that can derive partial answers to a query even

if not all necessary supporting knowledge is available. This is an important functionality

required by KILTER, since matching of examples and cases is usually inexact which is

not supported by standard, strict logical inference. An application of the KILTER case-

based reasoner to determine decisive points in a military course of action is described in

Section 3.

1.4 Large-scale Persistent Storage and Scalable
Inference
One aspect of high performance knowledge bases is that they can be very large. It is

therefore extremely important for tools operating on such knowledge bases to be

scalable. For a KR&R system to be scalable, it has to (1) be able to efficiently store and

access very large knowledge bases, and (2) be able to reason with them effectively. As

part of our work in HPKB we addressed both of these issues.

To be able to efficiently store and access very large KBs, we built the PowerLoom

Knowledge Pager. The Knowledge Pager uses a relational database (currently MySQL)

to persistently store PowerLoom knowledge. To do that, relation definitions and

assertions are specially encoded and then stored in the database. The current encoding

scheme stores all PowerLoom assertions in a single table which is different from standard

database practice, where each relation is stored in a different table. However, our

 5

encoding scheme allows us to very easily ask standard KR&R-style queries such as

“what are all facts known about Fred” which would be very difficult to ask in a standard

scheme using many individual relation tables.

A newly developed indexing and access scheme then allows PowerLoom to dynamically

find and page in knowledge from the database store. This scheme is lazy and does not

page in any knowledge into main memory until it is actually needed. A special

prefetching mechanism adds a little bit of “eagerness” to this lazy scheme in order to be

able to exploit locality on the database end by paging in related (and hopefully relevant)

information in a single access. Paged-in knowledge is stored in a size-limited cache,

which provides speedy access to repeatedly needed information but also ensures that we

won’t run out of memory even if we work with very large knowledge bases.

Modifications to the knowledge base are written back out to the database, which gives us

persistence. Variations of this knowledge paging mechanism have now also been applied

in other DARPA programs such as RKF and EELD.

The second aspect of scalability is effective inference. PowerLoom uses a fully

expressive language (a variation of first order logic) as its representation language.

Performing logical inference with first order logic is inherently computationally

intractable, but PowerLoom uses a variety of mechanisms such as resource bounded

inference and specialized reasoners to cope with the computational complexity of logical

inference.

In the context of very large knowledge bases, however, there is a second complexity

aspect that needs to be attended to: inference processes that are “eager” in nature and

always look at every item in the knowledge base are problematic, because it might take a

very long time for them to complete. One such affected inference module is the

PowerLoom description classifier which had to be designed specially to be able to work

with very large knowledge bases.

Description classifiers are uniquely suited to the task of organizing conceptual networks

into semantic hierarchies, and for validating the consistency of a knowledge base.

Classifier inferences help to make explicit semantic relationships and derived facts that

exist implicitly in a knowledge base, thereby assisting users in visualizing the contents

 6

and consequences of a complex base of axioms and facts. Classifiers are also able to

detect contradictory definitions, thereby providing a semantic check on the integrity of a

domain model.

Traditionally, all classifiers have been designed to operate in a sort of “batch” mode—for

every concept and instance entered into a classifier-based KR&R system the classifier

computes subsumption relationships derivable between it and all other concepts. The

computational overhead of classification becomes prohibitively large as knowledge bases

increase in size. In practice, this prevents a classification-based KR&R system from

managing very large knowledge bases; in other words, it is not scalable.

For PowerLoom, we invented a new mode of classification wherein any portion of a

knowledge base can be loaded into PowerLoom’s working memory, and the PowerLoom

classifier will classify only the main memory-resident knowledge entities. A special-

purpose form of this scheme is PowerLoom’s module-based classification that classifies

all relations and instances in a particular module only, thereby leaving large portions of

the knowledge base residing in other modules untouched. This allows a user to classify

the portion of the knowledge base or ontology s/he is actually interested in, without

having to pay the computational overhead for classifying large amounts of knowledge

that is irrelevant to the users task.

1.5 Other Tools
As programming languages drift in and out of fashion, large software systems built in

those languages can become obsolete, because the expense of porting them to newer

languages can be prohibitive. This phenomenon is currently afflicting systems built in

Common Lisp—large research systems such as Loom are gradually becoming less useful

to certain classes of users as those users migrate to other languages (e.g., to C, C++ or

Java). Prior to HPKB our group developed a unique programming language called

STELLA, tailored for programming intelligent symbol processing applications, that

eliminates this problem. Programs written in STELLA can be translated into efficient

C++ and Common Lisp programs. As part of our work in HPKB we additionally

developed a STELLA-to-Java translator. A system programmed in STELLA can

therefore be used by the (still considerable) body of researchers that use Common Lisp,

 7

as well as by (more product-oriented) users who base their software on C, C++, or Java.

PowerLoom is written in STELLA, and hence runs efficiently in all three different

languages. As mentioned above, the OntoSaurus browser is also written in STELLA,

making it highly portable as well. The use of STELLA-based technology means that

research systems like PowerLoom can get transitioned much more rapidly and smoothly

into commercial or product environments.

 8

2 The OntoMorph Translator for Symbolic
Knowledge

2.1 Introduction
A common problem during the life cycle of knowledge-based systems is that

symbolically represented knowledge needs to be translated into some different form. As

a tool to support such translation needs, we developed the OntoMorph system.

OntoMorph provides a powerful rule language to represent complex syntactic

transformations, and it is fully integrated with the PowerLoom KR system to allow

transformations based on any mixture of syntactic and semantic criteria

For example, integration of independently developed knowledge-based components

[Cohen et al., 1998], merging of overlapping ontologies [Valente et al., 1999],

communication between distributed, heterogeneous agents, or porting of knowledge-

based systems to use a different knowledge representation infrastructure commonly

require translation, since every encoding of knowledge is based on a multitude of

representational choices and assumptions. Translation needs go well beyond syntactic

transformations and occur along many dimensions, such as expressivity of representation

languages, modeling conventions, model coverage and granularity, representation

paradigms, inference system bias, etc., and any combination thereof.

Traditionally, such translations are either performed manually via text or knowledge base

editors or via special-purpose translation software. Manual translation is slow, tedious,

error-prone, hard to repeat and simply not practical for certain applications. Special-

purpose translation software is difficult to write, hard to maintain and not easily reusable.

Being confronted with translation problems on a frequent basis, we developed the

OntoMorph system to facilitate ontology merging and the rapid generation of knowledge

base (KB) translators. OntoMorph combines two powerful mechanisms to describe KB

transformations: (1) syntactic rewriting via pattern-directed rewrite rules that allow the

concise specification of sentence-level transformations based on pattern matching, and

(2) semantic rewriting which modulates syntactic rewriting via (partial) semantic models

and logical inference supported by an integrated KR system. The integration of these

 9

mechanisms allows transformations to be based on any mixture of syntactic and semantic

criteria, which is essential to support the translation needs enumerated above. The

OntoMorph architecture facilitates incremental development and scripted replay of

transformations, which is particularly important during KB merging operations.

2.2 The Translation Problem

Figure 2: The knowledge translation problem.

The general problem we set out to solve is shown in Figure 2. Given some source

knowledge base KBs we want to design a transformation function τ to transform it into a

target knowledge base KBt. A fundamental assumption in this formulation is that source

and target KBs are describable by a set of sentences in some linear, textual notation,

where sentence means some independent syntactic unit as opposed to a well-formed

logical formula associated with a truth value. This does not exclude graphical languages

such as, for example, SNePS [Shapiro & Rapaport, 1992] or Conceptual Graphs [Sowa,

1992], since they usually also have some linear syntax to textually describe their

networks. The translation does not necessarily have to span a whole knowledge base. In

some cases, it might only involve single expressions.

A common correctness criterion for translation systems is that they preserve semantics,

i.e., the meaning of the source and the translation has to be the same. This is not

necessarily desirable for our transformation function τ, since it should be perfectly

admissible to perform abstractions or semantic shifts as part of the translation. For

example, one might want to map an ontology about automobiles onto an ontology of

documents describing these automobiles. Since this is different from translation in the

usual sense, we prefer to use the term knowledge transformation or morphing.

τ

Source KBs Target KBt

 10

2.3 Dimensions of Mismatch
Despite the fact that the function τ might perform arbitrary semantic shifts, the most

common scenario is to translate between different models of the same general domain.

Unfortunately, these models can and in practice do differ along a multitude of

dimensions. The most commonly encountered mismatches are outlined below.

2.3.1.1 KR language syntax:
Every KR language comes with its own syntax, which is probably the most mundane but

nevertheless annoying mismatch. For example, here are three different ways of defining

automobiles as a subclass of road vehicles, one for Loom [MacGregor, 1991], a KL-

ONE-style description logic, one for MELD, the representation language used by CYC

[Lenat, 1995] and one for KIF [Genesereth, 1991]:

Loom: (defconcept Automobile
 "The class of passenger cars."
 :is-primitive Road-Vehicle)

MELD: (#$isa #$Automobile #$Collection)
 (#$genls #$Automobile #$RoadVehicle)
 (#$comment #$Automobile
 "The class of passenger cars.")

KIF: (defrelation Automobile (?x)
 "The class of passenger cars."
 :=> (Road-Vehicle ?x))

Apart from different surface syntax, there are also different syntactic conventions such as

the spelling of names that are really part of the culture of the language users. For

example, CYC names are mixed-case without hyphens as opposed to the hyphenated,

case-insensitive spelling usually used with the other languages.

2.3.1.2 KR language expressivity:
Every KR language trades off representational expressiveness with computational

tractability. For example, negation, quantification, defaults, modal operators,

representation of sets, etc. are supported by some languages and not by others. When

translating between languages of different expressiveness, difficult choices have to be

made in how to map certain representational idioms. For example, to represent that the

 11

typical capacity of a passenger car is five, we could use the following representation in

Loom:

(defconcept Automobile
 :is-primitive Road-Vehicle
 :defaults (:filled-by passenger-capacity 5))

To represent the same in ANSI KIF which does not support defaults, one would have to

resort to something like the following and then leave it up to some extra-logical means to

properly reason with typicality assertions:

(defrelation Automobile (?x)
 :=> (and (Road-Vehicle ?x)
 (typical-passenger-capacity ?x 5)))

2.3.1.3 Modeling conventions:
Even if the KR language and system for source and target KB are the same, differences

occur because of the way a particular domain is modeled. For example, a choice one

often has to make is whether to model a certain distinction by introducing a separate

class, or by introducing a qualifying attribute relation. E.g., to distinguish between

tracked and wheeled vehicles, one could either introduce two subclasses of Vehicle

called Tracked-Vehicle and Wheeled-Vehicle, or use an attribute relation as

in(traction-type My-Car wheeled). Which representation to choose is in

most cases just a matter of taste or convention.

2.3.1.4 Model coverage and granularity:
Models differ in their coverage of a particular domain and the granularity with which

distinctions are made. This is often the very reason why ontologies are merged. For

example, one ontology might model cars but not trucks. Another one might represent

trucks but only classify them into a few categories, while a third one might make very

fine-grained distinctions between types of trucks based on their general physical

structure, weight, purpose, etc.

2.3.1.5 Representation paradigms:
Different paradigms are used to represent concepts such as time, action, plans, causality,

propositional attitudes, etc. For example, one model might use temporal representations

 12

based on Allen's interval logic [Allen, 1984], while another might use a representation

based on time points. Section 2.5 describes a situation where two different

representations of "purpose'' had to be reconciled with the help of OntoMorph.

2.3.1.6 Inference system bias:
Last but not least, another reason why models often look a certain way is that they were

constructed to produce desired inferences with a particular inference engine or theorem

prover. For example, in a description logic such as Loom, certain inferences are well-

supported by the classifier, while others are only supported at the instance or individual

level. This trade-off can influence one's choice whether to model something as a class or

as an individual. See [Valente et al., 1999] for a discussion of modeling examples

exhibiting inferencing bias.

2.4 OntoMorph
To facilitate the rapid specification of KB transformation functions such as τ described

above, OntoMorph combines two powerful mechanisms: (1) syntactic rewriting via

pattern-directed rewrite rules that allow the concise specification of sentence-level

transformations based on pattern matching, and (2) semantic rewriting which modulates

syntactic rewriting via (partial) semantic models and logical inference.

2.4.1 Syntactic Rewriting
To allow translation between arbitrary KR languages that can differ widely in their

syntax, expressiveness, and underlying knowledge model, OntoMorph uses syntactic

rewriting as its core mechanism. Input expressions are first tokenized into lexemes and

then represented as syntax trees whose subtrees represent parenthesized groups (similar

to Lisp s-expressions). The tree structure exists only logically; a tree is represented

internally as a flat sequence of tokens.

For example, the expression f(g([x],y)) would be represented by the token

sequence

`f' `(' `g' `(' `[' `x' `]' `,' `y' `)' `)'

which, logically, represents the syntax tree shown in Figure 3. The significance of the

 13

tree structure is that complete subtrees can be matched by a single pattern variable, and

that sequence variables do not consume tokens beyond subtree boundaries.

Figure 3: Syntax tree representation of f(g([x],y))

OntoMorph's syntactic rewrite rules have this general form:

pattern ==> result

The left-hand-side pattern matches and destructures one or more syntax trees while the

right-hand side generates new trees of the desired format by explicitly specifying new

structure, reassembling some of the destructured information and by possibly further

rewriting some subexpressions. For example, a very simple rule to convert a MELD type

assertion into its Loom analogue would look like this (pattern variables are prefixed with

a '?'):

(isa ?x ?class) ==> (tell (?class ?x))

The ability to describe such transformations in a very direct and concise fashion was an

important design objective for OntoMorph. When researching the relevant parsing and

pattern-match literature and technology, we found that a language called Plisp (or Pattern

Lisp) [Smith, 1990], which in turn is a direct descendent of the Lisp 70 pattern matcher

[Tesler et al., 1973], came closest to our intuitions on how such transformations should

be represented and executed. Unfortunately, none of these systems is alive and well

anymore, so we had to develop our own version.

2.4.1.1 Pattern Language
OntoMorph's pattern language and execution model is strongly influenced by Plisp, even

though the actual surface syntax is quite different. The pattern language can match and

{)

[)

I
[]

I

 14

destructure arbitrarily nested syntax trees in a direct and concise fashion. A short

overview of the available constructs is given below:

Literals such as foo, "bar", 42,(, (a (b c)), etc., have to be matched by identical

literal tokens (or token sequences).

Variables (indicated by a ?-prefix), e.g.,?x, ?why or the anonymous variable ?, can

match individual input tokens such as foo or a token sequence representing a tree such

as (a (b c)). Once a variable is bound, it can only be matched by literal tokens

matching its binding.

Sequence variables (indicated by a ??-prefix), e.g.,??h, ??tail or the anonymous

variable ??, can match tree subsequences such as c (d) in the tree(a b c (d)).

For example, the pattern (??x b ??y)matches the tree (a b c (d)) by binding

??x to the single-element sequence a and ??y to the sequencec (d). Sequence

variables cannot consume tokens beyond subtree boundaries.

Grouping (expressed via braces) defines compound patterns. For example, the pattern

{a ?x c} can match the token sequencea b c. Groups are also used to apply pattern

modifiers such as repetition to compound patterns.

Alternatives (expressed via vertical bars) define disjunctive patterns such as {a | (b

?x) | c d}. The pattern matches if one of its components succeeds.

Optionals such as {a b [c]} are syntactic sugar for the more verbose {a b | a b

c} notation.

Repetition (expressed with the usual * or +notation) indicates that a pattern can be

matched multiple times. As a generalization, an m-n range can be supplied to mandate

that there have to be at least m and at most n matches. For example, {a | b}+

matches any sequence of a's and b's with length ≥ 1,{a | b}*1-2 matches only those

sequences with lengths between 1 and 2.

Input binding binds the input matched by a complex pattern to a single variable. This is

useful if a pattern has alternatives and it is necessary to refer to what was actually

matched by it in the right-hand side of a rewrite rule (without alternatives, the same could

 15

be achieved by literally repeating the pattern). For example, ?x := {a | (b ?y)

|c} matched against (b d) binds ?x to (b d).

Below is an example pattern that combines various of the elements described above to

match and destructure a Loom concept definition (note, that the example only covers

some aspects of the Loom concept language). The alternatives in combination with the

repetition construct allow the keyword/value pairs to appear in any order. The

construction for the :annotations keyword extracts a documentation string (which

might appear in various ways) while ignoring everything else:

(defconcept ?name
 {?is := {:is | :is-primitive} ?def |
 :characteristic ?c |
 :annotations
 ?a := {(documentation ?d) |
 (:and ?? (documentation ?d) ??) |
 ?}}*0-3)

The pattern matches and destructures concept definitions such as this one:

(defconcept Dog
 :annotations
 (:and Class (documentation "Canine"))
 :is-primitive Animal)

2.4.1.2 Execution Model
Rewrite rules are applied according to the following simple execution model: Initially, an

input stream is constructed consisting of the token sequence representing the input

expression. When a rewrite rule is applied, its left-hand-side pattern consumes tokens

from the input stream by matching them against the elements of the pattern. If the pattern

succeeds, the right-hand-side result is assembled and the resulting tokens are pushed back

onto the input stream where they replace the consumed input and become available as

input to further rewrite rules. For example, assume we have the following input stream:

`(' `isa' `car1' `Ford' `)' `(' ...

Now we apply the type transformation rule from before:

(isa ?x ?c) ==> (tell (?c ?x))

 16

Applying the rule modifies the input stream to the following:

`(' `tell' `(' `Ford' `car1' `)' `)' `(' ...

Assembly of a rule result involves collecting its right-hand-side component tokens from

left to right into a temporary store. Literal tokens such as the tell above are simply

copied, variables are substituted by their bindings, and functions and recursive rule

invocations (explained below) are evaluated and their results collected. Once all right-

hand-side components have been successfully evaluated, the content of the temporary

store is prepended to the input stream where it replaces the input consumed by the left-

hand-side.

Rewrite rules are always assembled into rule sets of the following form:

 (defruleset name

 pattern1 ==> result1

 ...

 patternn ==> resultn)

The individual rules are implicitly OR-ed and tried in sequence. The ruleset succeeds

with the result of the first successful element rule.

Explicit invocation of named rulesets is the primary mechanism to achieve recursion,

which is necessary to handle the translation of recursive structures. Apart from this

computational aspect, grouping rules improves modularity, and it also greatly improves

efficiency, since it restricts the set of rules tried to rewrite any given subexpression.

While matching a pattern and also during the assembly of the right-hand-side result

which might involve further rewrites, a rule may fail. In that case execution backtracks

to the most recent match choice point. After all input has been consumed and no more

rules need to be applied, the process terminates and the resulting state of the input stream

constitutes the result of the rewrite operation which is then either printed to some storage

medium or used directly as part of a KB operation such as assertion or retrieval.

 17

2.4.1.3 Function Calls and Rule Invocations
To allow the parsing and rewriting of recursive structures, other rulesets as well as built-

in functions can be invoked explicitly anywhere in a pattern. Such invocations are

written with an angle bracket syntax to distinguish them from the regular syntax tree

notation. For example, the call <Term ?x> invokes a function or ruleset called Term

on the argument ?x. Before the function is called, its arguments are evaluated and the

results pushed back onto the input stream from which they are then consumed. Excess or

missing arguments are left on or filled in from the remainder of the input. When a

function or ruleset invocation on the left-hand side of a rule returns, its result gets pushed

back onto the input where it immediately becomes available to subsequent pattern

elements. On the right-hand side (as described above), the result gets first collected in a

temporary store until all right-hand-side tokens of the rule have been evaluated.

The following two rule sets constitute a simple transformation system for arithmetic

expressions (note, that the + and *symbols need to be escaped to treat them as ordinary

characters):

(defruleset Term
 (?op := {\+ | - | * | /} ?x ?y)
 ==> (?op <Term ?x> <Term ?y>)
 (1\+ ?x) ==> (\+ <Term ?x> 1)
 (1- ?x) ==> (- <Term ?x> 1)
 (square ?x) ==> (* <Term ?x> <Term ?x>)
 ?x ==> ?x)

(defruleset Condition
 (lt ?x ?y)
 ==> (negative? (- <Term ?x> <Term ?y>))
 (gt ?x ?y) ==> <Condition (lt ?y ?x)>)

To apply these rules, we can use the OntoMorph function rewrite which takes an input

expression and a start rule as arguments. For example,

 (rewrite (gt (/ (1+ M) N) (square N))
 Condition)

returns the following result:

 (negative? (- (* N N) (/ (+ M 1) N)))

 18

Currently, OntoMorph uses a Lisp-style reader to tokenize the input into individual

lexemes. Future versions will allow the specification of customized tokenizers in order to

support the translation of languages with different lexical conventions.

2.4.2 Semantic Rewriting
Syntactic rewriting is a powerful mechanism to describe pattern-based, sentence-level

transformations. However, it is not sufficient if the transformations have to consider a

larger portion of the source KB, possibly requiring logical inference. A simple example

of such a transformation is conflation. Suppose one wants to conflate all subclasses of

Truck occurring in some ontology about vehicles into a single Truck class. This

involves among other things the rewriting of all type assertions involving trucks. Using

syntactic rewriting alone, one would need a rule such as the following that explicitly lists

all subtypes of Truck:

(defruleset Conflate-Truck-Types
 ({Light-Truck | Heavy-Truck | ...} ?x)
 ==> (Truck ?x))

For large taxonomies this is of course neither elegant nor feasible. Instead of the purely

syntactic test based on truck class names, a semantic test is needed to check whether a

particular class is a subclass of Truck.

To facilitate the utilization of semantic information, OntoMorph is built on top of the

PowerLoom knowledge representation system. PowerLoom is a successor to the Loom

system that supports definitions and rules in a typed variant of KIF combined with a

powerful inference engine and a classifier. Wherever a function call is legal in a rewrite

rule, a PowerLoom function can be called to change or access the state of the current KB.

One way to solve the conflation problem is to establish a partial mirror of the source KB

within an intermediate PowerLoom KB. This can be done with a specialized set of

rewrite rules that import source sentences representing taxonomic relationships, but

ignoring all other information, for example, by only paying attention to subset and

superset assertions. This step can be viewed as the first pass of a two-pass translation

scheme. In the second pass, the actual translation rules are applied, but now they can also

 19

access the semantic information established in the first pass. Making use of the imported

taxonomic knowledge, the following rule can conflate all truck types:

(defruleset Conflate-Truck-Types
 {(?class ?x) <ask (subset-of ?class Truck)>}
 ==> (Truck ?x))

The left-hand-side contains a group of patterns which is treated as a conjunction. The

first conjunct (?class ?x) simply matches any type assertion. The second one calls

ask which triggers a PowerLoom query. Note that ?class will be substituted with the

matched class name, thus, the query will be fully ground. Since ask is a boolean-valued

function, its result will simply be treated as a test instead of being pushed back onto the

input stream.

Using semantic import rules, an arbitrarily precise image of the source KB semantics can

be established within PowerLoom (limited only by the expressiveness of first-order

logic). Then syntactic rewrite rules can use the imported semantic information to

perform rewrites based on any mixture of syntactic and semantic criteria.

Obviously, the precision of the semantic import will affect the quality of the translation.

For example, in the scenario above the semantic import only considered subset and

superset assertions. Depending on the nature of the source KB, there might be other

information and rules that would allow one to infer additional taxonomic relationships.

These would then not be inferable within the partial PowerLoom mirror KB which might

adversely affect the translation quality.

Whether this is a problem and how to best solve it has to be decided on a case-by-case

basis. One solution is to use PowerLoom as an interlingua and import everything from

the source KB (again, this is limited only by the expressiveness of PowerLoom). The

disadvantage of this scheme is that one effectively needs two sets of translation rules, one

to translate from the source into PowerLoom, and one to go from PowerLoom to the

target representation. Alternatively, it might be possible to call out to the KR system that

has the source KB loaded and use its inferencing capabilities directly. This can either be

done via some special-purpose API, or, if supported, via a protocol such as OKBC

[Chaudhri et al., 1998]. Which route to take will depend on a variety of pragmatic

 20

factors. For the OntoMorph applications constructed to date, importing partial semantic

information into PowerLoom was sufficient to support all rewriting needs.

2.5 OntoMorph Applications
OntoMorph has already been successfully applied in a couple of domains. One involved

the translation of military scenario information for a plan critiquing system. In the

second it formed the core of an agent translation service called Rosetta, where it was used

to translate messages between two communicating planning agents that used different

representations for goals.

2.5.1 Course of Action Critiquer
One of the challenge problems that drove the second phase of DARPA's High

Performance Knowledge Bases (HPKB) project [Cohen et al. 1998] was to develop

critiquing systems for military courses of actions (or COAs) which are high-level, plan-

like descriptions of military operations. To represent a particular COA, scenario

information from a graphical sketch pad was fused with information from a natural

language description of the COA by a program called the Fusion engine. The combined

description of the COA was represented in CYC's MELD language and then fed to five

independent critiquing systems built by different teams. Only one of the critiquers was

using CYC directly and did not have to translate the Fusion engine output. All others had

to use some form of translation system. Many different scenarios had to be handled in a

tight evaluation schedule, thus, manual translation was not an option. OntoMorph was

chosen to translate the Fusion output for the critiquer based on the EXPECT knowledge

acquisition system [Gil, 1994] which uses Loom to represent its knowledge. What

follows is a list of translation issues that arose, and how they were solved:

2.5.1.1 Different Names:
While most of the names generated by the Fusion engine were shared by the EXPECT

critiquer, some of them differed due to parallel independent development of critiquers

and ontologies as well as personal style. Renaming was taken care of with simple rules

like the following:

(DEFRULESET rename-collection

 21

 Fix-MilitaryTask ==> FIX
 {ProtectingSomething |
 ProtectingPhysicalRegion} ==> PROTECT
 Translation-LocationChange ==> MOVE
 ...)

2.5.1.2 Different Syntax:
OntoMorph started with a KIF translation of the Fusion output which still contained

various MELD idioms that needed to be translated into Loom syntax. For example, isa

assertions such as(isa task1 Fix-MilitaryTask) had to be translated into the

Loom idiom (FIX task1) (which here also involved a name change). MELD frame

predicates were also easily translated into Loom with the following rule:

(DEFRULESET rewrite-frame-predicate
 (relationInstanceExistsCount
 ?relation ?instance ?type ?count)
 ==> (:ABOUT <rewrite-term ?instance>
 (:EXACTLY ?count
 <rename-relation ?relation>
 <rename-collection ?type>)))

2.5.1.3 Different Representations:
The most challenging difference to overcome was the different representations used to

represent the purposes of tasks. The Fusion engine used an idiom that related a task with

a proposition whose truth was supposed to be brought about by carrying out the task. For

example, to state that the purpose of the task carried out by BlueDivision1 was to

protect Boundary1, the following representation was used:

(taskHasPurpose BlueDivisionTask
 (thereExists ?p
 (isa ?p
 (CollectionSubsetFn
 ProtectingSomething
 (TheSetOf ?obj
 (and (objectTakenCareOf
 ?obj Boundary1)
 (performedBy
 ?obj BlueDivision1)))))))

This can roughly be paraphrased as follows: The purpose of BlueDivisionTask is to

bring about the existence of an event ?p that is an instance of the event type

ProtectingSomething restricted by the set of events in which BlueDivision1

 22

takes care of Boundary1 (the restriction is expressed via the CollectionSubsetFn

construction). This representation goes far beyond the expressiveness of Loom which

does not have a way to represent higher-order sentences such as the above. It also did not

meet the requirements of the EXPECT critiquer, which needed a reified purpose

representation such as the following:

(AND (PROTECT protect00)
 (PURPOSE-ACTION protect00)
 (PURPOSE-OF BlueDivisionTask protect00)
 (ACTION-OBJ protect00 Boundary1)
 (WHO protect00 BlueDivision1))

The final version of the Fusion engine only used three structurally different purpose

representation patterns. Each of them could be handled by an OntoMorph rule such as

the following:

(DEFRULESET rewrite-purpose-pattern1
 {(taskHasPurpose ?task
 (thereExists ?var
 (isa ?var
 (CollectionSubsetFn
 ?type
 (TheSetOf ?action ?body)))))
 <generate-unique-name
 <rename-collection ?type>>
 ?purpose}
 ==> (AND
 (<rename-collection ?type> ?purpose)
 (PURPOSE-ACTION ?purpose)
 (PURPOSE-OF ?task ?purpose)
 <rewrite-purpose-setof-body
 ?body ?action ?purpose>))

The mapping between the two representations is very direct and makes good use of

OntoMorph's destructuring facilities for syntax trees. The only complication is the extra

right-hand-side function call to create a skolem individual needed to represent the reified

purpose. This is taken care of by a call to the built-in function generate-unique-

name which bases the generated name on the supplied argument (in this case, the

renamed base event type). It does not consume anything from the input stream but

simply pushes the result back onto it where it is then consumed by the ?purpose

variable.

 23

2.5.1.4 Missing Representations:
Some information needed by the EXPECT critiquer such as COA substructure and

task/subCOA associations was not explicitly represented and needed to be recovered by

some of OntoMorph's semantic rewrite features, e.g., by keying in on "meta-information''

such as where in the Fusion output certain assertions were made.

For example, to associate a task with a particular subCOA, it was necessary to track what

tasks were performed by what unit which was handled by the following two rules:

(DEFRULESET track-COA-assertion
 (unitAssignedToTask ?task ?unit)
 ==> <!ASSERT
 (AND (Term ?task) (Term ?unit)
 (unitAssignedToTask
 ?task ?unit))>)

(DEFRULESET get-task-assigned-to-unit
 {?unit
 <@RETRIEVE \?t
 (= (unitAssignedToTask \?t) ?unit)>
 ?task}
 ==> <OBJECT-NAME ?task>)

The first rule creates a PowerLoom assertion for each unitAssignedToTask

statement in the Fusion scenario. PowerLoom expects all its objects to be typed before

they are used which is the reason for the additional Term assertions. The second rule

retrieves the task recorded for a particular unit which was then used to associate it with

the sub-COA in which the particular unit was involved. Note, that the ?t variable within

the PowerLoom retrieve statement is escaped, since it is a retrieval variable and not a

pattern variable of the rewrite rule. The ?unit variable, however, is a pattern variable,

thus, its binding is substituted before the retrieval is executed and is seen by PowerLoom

as an ordinary constant.

The complete translator was comprised of about 30 rulesets, 10 of which were necessary

just to track unrepresented COA structure. The size of the translator was about 15

kilobytes of text.

 24

2.5.2 Rosetta Agent Translation Service
Rosetta is a prototype of an ontology-based translation service operating in a domain of

planning agents. It reengineers some aspects of a technology integration effort described

in [Cox & Veloso, 1997] which connects the ForMAT case-based planning tool

[Mulvehill & Christey, 1995] with the Prodigy/Analogy planner [Veloso, 1994; Veloso et

al. 1995]. In the original experiment, special-purpose translators were constructed to

allow ForMAT and Prodigy/Analogy to communicate. Rosetta is an attempt to show

how these translators can be replaced with a more flexible, general-purpose translation

architecture that promotes reuse and that can scale up to large numbers of heterogeneous,

communicating agents. The full motivation and details of the Rosetta architecture are

given in [Blythe et al., 2000]. Here we will only touch on some aspects and how they are

handled by the OntoMorph system.

The main idea behind Rosetta is that it provides a representation interlingua in

conjunction with a repository of broad-coverage as well as domain-specific ontologies

that can be used to represent content expressions exchanged by heterogeneous

communicating agents. Each agent is associated with a wrapper that (1) translates its

message content language into the interlingua used by Rosetta, and (2) if necessary,

aligns terms of the agent ontology with Rosetta's ontologies. Within Rosetta, each agent

is associated with a model that represents relevant aspects of the agent's domain. As

motivated in Section 2.3, using the same KR language and system to model a domain

does not by itself eliminate the need for translation, since different representations can be

used to express the same semantic content. To facilitate translations between such

different representations, Rosetta has a library of representation reformulation rules.

To translate a message between agents A and B, agent A first uses its wrapper to translate

the message content into Rosetta's format and sends it to Rosetta. Rosetta then checks

whether any reformulation rules need to be applied to make the message understandable

by agent B, and, if so, applies them. The resulting message is then sent to agent B which

uses its own wrapper to translate it into its internal format. One of the advantages of this

architecture is that the portion of the necessary translation mappings encodable in the

wrappers grows only linearly with the number of different agent classes.

 25

The uses of OntoMorph within this scenario were twofold: (1) It provided an obvious

solution to implement the agent wrappers by primarily relying on its syntactic rewriting

features. (2) Its semantic rewriting features were used to implement the necessary

representation reformulation rules. For example, the following top-level rule was used to

translate a goal posted by the ForMAT planning tool into the Rosetta representation

(note, that only the most relevant aspects of these rules are reproduced to save space):

(defruleset format-to-rosetta-wrapper
 {(:goal ?goal)
 <translate-format-goal-to-rosetta ?goal>
 ?translated-goal}
 ==>
 (message
 (content
 (find (object plans)
 (for (Objective-Based-Goal
 ?translated-goal))))
 ...) ...)

This rule translates a ForMAT request such as

(:goal
 (G-144 :Send-Hawk
 ((force 42nd-Batt)
 (geographic-location Big-Town))))

into the following representation understandable by Rosetta (the message content

language used for this prototype is based on the verb clause goal language used by the

EXPECT system):

(message
 (content
 (find (object plans)
 (for (Objective-Based-Goal
 (send-unit
 (object 42nd-Batt)
 (to Big-Town))))))
 ...)

Once this message arrives at Rosetta, it is handled by its top-level translation rule whose

main purpose it is to trigger the translation of content expressions:

(defruleset translate-rosetta-message
 {(message
 {(content ?content) |

 26

 ...}*4-4)
 <map-performative ?content>
 ?mapped-performative}
 ==>
 (message
 (content ?mapped-performative)
 ...) ...)

One of the interesting aspects of the communication between ForMAT and

Prodigy/Analogy is that ForMAT uses an objective-based or verb-centered representation

such as "send troops to X'' to represent its goals. Prodigy/Analogy, on the other hand,

needs to be given a state-based goal representation such as "troops deployed at X'' to

generate a plan. To be able to represent these different kinds of goals as well as other

planning-related aspects, Rosetta employed the PLANET ontology developed by Blythe

and Gil [Blythe et al., 2000]. To translate between objective-based and state-based goals,

Rosetta uses a (heuristic) reformulation rule that looks for the primary effect of the

planning operator describing the objective-based goal to serve as its state-based

translation. Here are two of the central reformulation rules involved in this mapping:

(defruleset map-objective-to-state-based-goal
 {?goal-instance ??roles
 <find-equivalent-operator ?goal-instance>
 ?operator
 <get-primary-effect ?operator> ?effect}
 ==>
 (State-Based-Goal
 <map-operator-and-roles
 ?operator ?effect (??roles)>))

(defruleset find-equivalent-operator
 {?goal-instance
 <@most-specific-named-descriptions
 <retrieve-tuples all \?op
 (and (member-of ?goal-instance \?op)
 (context-of
 \?op <get-agent-model
 <current-receiver>>)
 (exists \?effect
 (role-type primary-effects
 \?op \?effect)))>>
 ?equiv-operator}
 ==>
 <object-name ?equiv-operator>)

The first thing Rosetta does is to find a planning operator in its model of the

 27

Prodigy/Analogy agent that is a suitable match for the operator requested by ForMAT. It

does so by looking for the most specific operator description that matches the description

of the goal posted by ForMAT by using a PowerLoom subsumption test. After the

operator is found, its primary effect is used as a state-based goal description that can be

passed on to Prodigy. Once the top-level translate-rosetta-message rule

terminates, the translated message looks like this and is sent to Prodigy:

(message
 (content
 (find (object plans)
 (for (State-Based-Goal
 (is-deployed
 (object 42nd-Batt)
 (at Big-Town))))))
 ...)

Finally, the Prodigy/Analogy wrapper translates that into the following, which can be

sent directly to the planner:

(:find-plans
 (is-deployed 42nd-Batt Big-Town))

The Rosetta application provides a nice testbed for all aspects of OntoMorph. Syntactic

rewriting is exercised in the agent wrappers, semantic rewriting is exercised to perform

representation reformulations, and a mixture of both controls the scripting of the overall

translation process. Furthermore, the tight integration with the PowerLoom KR system

and the interpreted nature of the rewrite rules provide for a very productive, incremental

development cycle.

2.6 Related Work
Ontolingua [Gruber, 1993; Fikes et al., 1997] is an attempt to avoid the translation

problem by providing a centralized ontology repository that encourages reuse, and an

ontology specification language that serves as an interlingua whose representational

primitives can be translated into a variety of target KR languages by special-purpose

translators. However, since the generated translations cannot be controlled,

modifications such as changing modeling conventions or performing semantic shifts is

not possible. While avoiding translation is always a good strategy, it is not always

 28

possible such as in the case of distributed, heterogeneous agents. Using one big,

centralized ontology as done by CYC has similar drawbacks. In particular, it becomes

problematic when a smaller system that only relies on a portion of the ontology needs to

be fielded. Another alternative to translation is the use of lifting axioms as done in

[Frank et al., 1999]. Lifting axioms can only be used in systems expressive enough to

support them. Another drawback is that they perform translations via logical inference at

query time, which could be prohibitively expensive.

Since part of OntoMorph can be viewed as a parser specification system, it is legitimate

to ask how it compares to other parsing technology such as YACC, definite clause

grammars, natural language parsers such as ATNs, etc. YACC parsers are only

applicable to context-free languages that are LR(1), which is too restrictive for a general-

purpose translation system. Natural language parsers such as ATNs could in principal be

used to implement a rewrite system, but since they are geared towards parsing of natural

language sentences instead of arbitrary syntax trees, the specification would be less direct

and more difficult. Definite clause grammars probably come closest to our desiderata for

direct and concise specification of transformation rules, however, extra support would be

necessary to support certain conveniences of the OntoMorph pattern language such as

sequence variables and bounded repetition of compound patterns. Additionally, the

integration with a KR system such a PowerLoom would still be missing which is a

crucial part of OntoMorph's utility. Similar objections hold for languages such as POP-11

which already provide some of the pattern match functionality needed by OntoMorph,

but lack the combination of features and the integration with a KR system such as

PowerLoom.

2.7 Future Work: Ontology Merging
One of the primary motivations for the development of OntoMorph was to support

merging of overlapping ontologies. Merging two or more source ontologies into a

merged ontology involves the following steps:

1. Finding semantic overlap or hypothesizing alignments.

2. Designing transformations to bring the sources into mutual agreement.

 29

3. Editing or morphing the sources to carry out the transformations.

4. Taking the union of the morphed sources.

5. Checking the result for consistency, uniformity, and non-redundancy and

if necessary repeating some or all of the steps above.

These steps have different degrees of difficulty and are supported to various degrees by

the state of the art. For example, techniques for hypothesizing alignments have been

developed during large-scale ontology merging tasks as described in [Knight & Luk,

1994; Hovy, 1998; McGuinness et al., 2000], and consistency checking is already fairly

well supported by today's KR systems. Designing the necessary transformations is

probably the most difficult and least automatable task, since it involves understanding the

meaning of the representations. Additionally, this step often involves human negotiation

to reconcile competing views on how a particular modeling problem should be solved.

At the center of every merging operation is step 3, since before ontologies can be merged

they have to be transformed into a common format with common names, common

syntax, uniform modeling assumptions, etc., which always involves some of the

transformation operations described in Section 2.3. Since merging is an iterative process,

it is very important that these transformations can be specified easily and carried out

repeatedly and automatically with a tool such as OntoMorph. This is even more

important in the context of tracking changes to one of the sources in a later re-merge.

Without a clear and executable specification of the transformations used in the initial

merge, much of the merging work has to be redone by hand. By using a tool such as

OntoMorph, many of the necessary transformation rules will be reusable as is, and only

the changed and extended portions of the modified source ontology will require adapted

or new rewrite rules.

 30

3 Determining Decisive Points through Case-
Based Reasoning

3.1 Overview

The DARPA High Performance Knowledge Bases (HPKB) program has detailed a

number of real military problems that challenge the current state of the art in artificial

intelligence and knowledge based systems. These problems cover areas where automated

solutions could greatly benefit the military, but where automation has proven difficult

with traditional methods. Below we describe our solution to one of these problems:

determining focus points for military planners.

One of the most difficult tasks in military planning is determining an appropriate point of

focus, called a decisive point. A military decisive point is the point on a battlefield where

a military course of action (i.e., plan) should be directed. Military experts believe that

identifying effective decisive points is an art, where proficiency comes only through

experience [Jones, 1999]. Experts find it difficult to verbalize their problem-solving

knowledge and cannot easily teach decisive point reasoning. Consequently, it has proven

difficult to automate this process with traditional expert systems technology.

Our solution avoids this knowledge acquisition bottleneck by acquiring knowledge from

examples rather than expert rules. Even when experts cannot describe their reasoning,

they can provide examples or case histories of decisive points. These examples can be

used as a case base for a case-based reasoner or as a set of training examples for an

inductive learning algorithm. In both situations, the examples provide significant

knowledge content. While both case-based reasoning and inductive learning are valid

solutions, this paper focuses on the case-based reasoning approach.

The decisive point problem presents two important challenges to case-based reasoning:

how to manage structural case knowledge and how to fuse expert, rule-based knowledge.

Most case-based reasoning applications operate on flat feature vectors and are

incompatible with relational representations. The decisive point case knowledge,

however, is inherently relational and does not lend itself to a feature vector

 31

representation. The second challenge concerns existing expert knowledge. In the

decisive point problem, experts cannot provide a complete solution but can provide

knowledge fragments that are useful in determining decisive points. A successful case-

based reasoner must leverage both rule-based and example-based knowledge.

Below we present a novel case-based solution to the decisive point problem that

addresses each of these challenges. The reasoner is part of the KILTER learning toolset

within the PowerLoom knowledge representation system and uses an innovative

combination of nearest neighbor, graph search, neural networks, and natural deduction to

build, match, and reason with relational case knowledge. Since the reasoner is

implemented within PowerLoom it also exploits any existing rule-based knowledge about

the problem. Such an approach can be thought of as knowledge-rich cased-based

reasoning.

3.2 The Decisive Point Problem

3.2.1 Problem Description
A course of action (COA) is defined by the US military as a sketchy plan that describes

how a military unit will carry out its mission. COAs are generated by a military planning

staff through a well-specified process called the military decision-making process, where

numerous competing COAs are developed and analyzed. All COAs have a point of focus,

called the decisive point, where the military directs its combat effort. Decisive points

normally refer to a feature on a map such as a geographic region or a specific military

unit.1 The most effective decisive points match a military strength against an enemy

weakness.

Military planners place great emphasis on understanding and exploiting the best decisive

points for a given mission. Unfortunately, military experts agree that there is no general

procedure for determining effective decisive points [Jones, 1999]. Decisive points are

normally chosen from a "gut feeling'' rather than by following strict military doctrine.

Military students become adept at recognizing good decisive points simply through trial

1Decisive points properly refer to a physical location and a time. Here we are concerned
only with the physical component.

 32

and error. Given numerous examples of decisive points and direct feedback on whether

the missions were accomplished, students begin to form an internal model of good and

bad decisive points. Unfortunately, students and experts find it difficult to translate this

model into a concise set of rules. A typical response when asked what make something a

good decisive point is "I know it when I see it.''

While experts cannot provide a complete set of rules to describe their reasoning, they can

provide some knowledge fragments that are incomplete, but still useful. Some of this

knowledge is domain general such as knowledge about geography and geographic

relations (e.g., directions, relative distances, betweenness, etc.) and some is specific to

decisive points. One example of a domain specific knowledge fragment is the fact that

linear features such as rivers, borders, and phase lines are not good decisive points

because they do not provide a single point of focus. An example of domain general

knowledge is the fact that if x is east of y, then y is west of x. In addition to these

knowledge fragments, experts can provide examples of their decisive point choices along

with a measure of goodness. The goodness measure may come from an evaluation in a

simulator or may be artificially generated by the expert.

The challenge problem is as follows. Given several knowledge fragments from experts

and a set of decisive point cases, build a system to evaluate future decisive points. The

system should input all scenario and mission related information and output a ranking of

the best decisive points.

3.2.2 A Case-Based Reasoning Solution
Given the lack of existing knowledge and the availability of decisive point examples, a

machine learning approach seems appropriate. Case-based reasoning is a branch of

machine learning that has many pseudonyms including instance-based learning, lazy

learning, and nearest neighbor. The tenet of case-based methods is that solutions to

previous problems should be explicitly adapted and reused in similar future problems.

Figure 4 gives a basic case-based algorithm. Each example is explicitly stored in a case

base. Once a query example is presented, the reasoner passes through two phases: case

matching and solution adaptation. In the matching phase, the reasoner compares the

 33

Figure 4: Case-based Reasoning High Level Algorithm. In the decisive
point problem, x refers to a decisive point description and f(x) refers to the
goodness of the decisive point.

query example to each stored case and computes a distance measure. In the adaptation

phase, the solutions from the cases with the lowest distance are combined and adapted to

fit the query. Combination and adaptation are normally problem-specific procedures.

We adopted a case-approach over other machine learning methods for several reasons.

First, we've found military experts to be very receptive to case-based reasoning because it

often reflects their own reasoning. They understand the high level case-based algorithm

and are more likely to trust its answer than, for example, a neural network, which

operates more as a black box. Second, case-based reasoning provides human-

understandable explanations. Along with the answer, a case-based approach can provide

the relevant cases used to compute the answer. Other learning systems are not as

verbose. For example, a rule induction algorithm often generates rules which do not

make any sense to the user and consequently its explanations are often readable but not

meaningful [Pazzani, Mani & Shankle, 1997].

The final motivation for case-based reasoning is that case-based methods do not form an

explicit representation of the hypothesis and thus have almost no computational overhead

at training time. Rule induction methods build a set of rules and neural network methods

form a neural network. A case-based method simply stores all of the training examples,

which is why it is often called lazy learning. The advantage of being lazy is that it does

not have to recompute its hypothesis when new training examples are provided. It simply

stores them with the others. Other learning methods have to adjust or often recompute

their explicit hypothesis representations any time new training examples are provided,

which creates a significant overhead expense. Of course, case-based methods have

For each training example (x, f(x)), add the example to case base, C
Given a new query example xq
 Find the k examples, xi . . . xk, in C nearest to xq
 Return a combination of f(xi) . . . f(xk)

 34

computational overhead also, but it comes only when queries are issued, not when

training examples are added. In our experience, experts are often happier to wait when

the system is answering a question than when they are simply updating it.

3.2.3 Technical Hurdles
We identified two major challenges in applying case-based reasoning to the decisive

point challenge problem: managing structured case knowledge and fusing rule-based and

example-based knowledge. Unfortunately, most case-based applications do not address

either. This section outlines these challenges and relates their importance to the decisive

point problem.

3.2.3.1 Relational Case Knowledge

When evaluating a potential decisive point, experts rely on several different sources of

knowledge. They consider the overall mission and its objectives, knowledge about the

terrain and other geographic features, and knowledge about specific military units. Since

these sources are critical in evaluating a decisive point, they should be included in the

decisive point case description. In other words, a decisive point case should include all

features or characteristics that lead experts to conclude that this is a good or bad decisive

point.

It is difficult to imagine a non-relational representation for this type of knowledge.

Consider knowledge about the terrain, which describes different geographical features

such as rivers, mountains, and roads. These objects have basic properties such as

position, length, and width, but the most interesting characteristics are how they are

related to one another. For example, a mountain may be between two military units, and

would indicate that these units are blocked from each other. This type of knowledge

requires relations between specific instances and resembles a structured hypergraph

where nodes reflect instances and arcs represent relations. Figure 5 gives an example of

the type of relational knowledge in decisive point cases.

 35

Figure 5: A partial decisive point description.

Unfortunately, almost all implementations of case-based reasoning operate on a flat set of

feature values and cannot match relational cases [Gebhardt, 1997; Kolodner, 1993]. Thus,

a case-based solution to the decisive point problem requires either an algorithm to

translate the relational knowledge into a feature vector representation or a case-matcher

that can directly compare structured cases. In Section 3.3.2, we describe a case-based

system that uses both strategies.

A second problem with relational case knowledge concerns the dimensions along which

two cases are compared. Traditional case-based methods assume that this information is

given a priori (e.g., features in the feature vector). Unfortunately, when reasoning with

structured knowledge we are normally not afforded this luxury. For example, decisive

point cases can be described using any number of instances, properties, and relations. In

other words, there is no single convention for describing a decisive point case; each is

likely to have a different knowledge structure. Since we do not have a set of properties

and relations common to all cases, we must devise another strategy for generating the

relevant dimensions for comparison.

3.2.3.2 Combining Rule-based Knowledge with Examples
Traditional case-based reasoning methods utilize one source of knowledge: the case base.

Case-based reasoning, along with most machine learning methods, normally ignore any

existing rule-based knowledge about the domain. The rationale is twofold. First, in most

 36

cases training data is plentiful and good performance can be achieved with examples

alone. Second, it is not obvious how these methods could exploit such knowledge.

In the HPKB decisive point challenge problem, the training data was rather sparse. We

were given only 50 cases of previously identified decisive points, which, given the

complexity of the problem, represents a limited sampling of the overall problem-space

distribution. Thus, to achieve higher levels of performance, one cannot rely on examples

alone.

Unfortunately, little work has been done to develop methods that combine both rule-

based and example-based knowledge. Typically, builders of intelligent systems fall into

one of two camps. The knowledge engineering camp builds everything from expert

rules. The machine learning camp learns everything from examples. This problem

requires elements of both to be successful.

3.3 Knowledge-Rich Case-Based Reasoning
To overcome the challenges outlined in the previous section, we implemented a case-

based reasoning module in the PowerLoom knowledge representation system. The

reasoner combines nearest neighbor, neural networks, graph search, and natural

deduction to reason effectively with relational, example-based knowledge and rule-based

knowledge. We characterize this approach as knowledge-rich case-based reasoning.

The overall algorithm for ranking decisive points is given in Figure 6 and can be

summarized as follows. Cases are stored in PowerLoom as a set of relational facts.

Criteria for comparing two cases are generated from the case base using a graph search

algorithm called GSA. PowerLoom then maps each case into the criteria and constructs

match vectors. The match vectors are fed into a neural network which is trained to build

a compact, semantically-rich representation for each case. The semantic representations,

called signatures, are stored in the case base to be matched by queries.

 37

Figure 6: Decisive point algorithm

Given a new scenario, the algorithm evaluates each map feature (e.g., geographic regions,

military units, cities, etc.) as a potential decisive point. Given a map feature, the

algorithm first queries PowerLoom to determine if any rules match this feature and can

infer goodness. If goodness cannot be inferred through a rule, the algorithm invokes the

case-based reasoner. The trained neural network computes a signature for the map

feature which is subsequently compared to the signatures in the case base using standard

 38

Euclidean distance. The goodness of the map feature is the distance-weighted average of

the goodness of the top three closest matching cases. Once all features have been

evaluated, the top three points are returned.

The case-based algorithm follows a general k-nearest neighbor strategy with several

innovations for managing structured cases and existing rule knowledge. The remainder

of this section describes these enhancements and how they contributed to the success of

the decisive point reasoner.

3.3.1 Generating Match Criteria
To judge similarity between two cases, one must know the dimensions along which cases

may vary. Unfortunately, as described in Section 3.2.3.1, such criteria is not obvious

when using relational case representations. This section describes an algorithm called

GSA (Generalized Structural Assertions) that uses a heuristic approach to generate match

criteria from a relational case-base. GSA capitalizes on one simple idea: the most

important criteria for judging similarity between any two cases is the set of facts that

have been used to describe the cases. In other words, rather than including all predicates

that could be used to describe a case, GSA only includes predicates that actually have

been asserted.

The GSA algorithm can be broken down into two main phases. In the first phase, GSA

collects and generalizes the set of asserted facts describing each case in the case base.

GSA traverses the structure of each case depth-first to a given depth and records all links.

The algorithm follows that of Emde [1996] and is as follows. Starting with the root

instance of the case, generate and record all directly asserted facts. Repeat this process

for each new instance found in the new facts until a specified depth limit d is reached.

The knowledge structure in Figure 5 represents the asserted facts at depth limit two for a

case rooted at EA1.

After collecting the facts, GSA generalizes the facts, creating a generalized knowledge

structure. Generalization broadens the scope of the assertions to apply to many cases

rather than one specific case. GSA generalizes by substituting variables for instances.

 39

Specifically, variables are substituted for all instances linked to the root instances with

less than d relations. In other words, all non-leaf instances are variablized.

Figure 7 shows the generalization of the Figure 5 knowledge structure. By variablizing

the assertions, other cases can be matched into the structure simply by generating

bindings for the variables. For example, a case might be similar to the EA1 decisive

point, because it is near a river and is part of a protect task. Without generalization, a

matching case would have to be near River5 and be part of Mission1.

Figure 7: A generalized knowledge structure. Variables are substituted
for all non-leaf instances.

The second stage of GSA concerns folding in generalized knowledge structures from

multiple cases. A naive combination strategy would simply attach each structure under a

common root node. This strategy, however, ignores overlap between knowledge

structures and creates an unnecessarily complicated unification. A better strategy when

folding in a new knowledge structure is to only add structure that is not present in the

unified structure. Unfortunately, finding the largest common overlap among knowledge

structures is an instance of the largest common subgraph problem, which is known to be

NP-Hard. Therefore, GSA uses a heuristic algorithm to find the common knowledge

structure and does not guarantee the simplest unification.

Figure 8 illustrates the GSA structure combination process. GSA starts unifying at each

root node (?X in Figure 7) and moves down the graph attempting to align variables. The

GSA folding algorithm is as follows. First, sort the generalized assertions based on the

 40

distance from the root node. The distance of an assertion from the root is the smallest

number of relational links that connect a single argument in the assertion to the root

variable. For example, in Figure 7 the assertion NorthOf(?V4,?V3) has a distance of 1,

since ?V3 can be linked to the root, ?X, using a single relation Near. Sorting ensures that

GSA unifies all variables close to the root before moving to the assertions deeper in the

graph.

Figure 8: An example of structure folding in GSA. The figure illustrates
folding three different knowledge structures into one unified structure.
The first structure is simply copied to the empty unified structure. In the
second example, variable ?V4 is unified with variable ?V1, since they both
share the relation r1 from ?X.

Second, for each assertion in the sorted knowledge structure attempt to find a matching

assertion among the unmatched assertions in the unified knowledge structure. Two

assertions match if they contain the same predicate and there is no conflict between their

New Slruclure UnLfted SUuctuie VaiiabTe Substitutions

W1 = ?V4

?V1 = ?V6
W7 = ^V5

 41

arguments. Argument conflicts occur when a common variable between the two

assertions appears in different argument positions. The result of the assertion match is a

set of variable substitutions necessary to complete the match. For each match, GSA

deletes the matching clause from the sorted knowledge structure and propagates the

variable substitutions through the remaining clauses. The final folding step adds all

unmatched assertions in the sorted knowledge structure to the unified knowledge

structure. The unmatched assertions represent new knowledge that is not currently

represented in the unified knowledge structure.

The result of GSA is a knowledge structure that reflects the combined descriptions of the

cases. The structure can be thought of as the set of relevant criteria to describe a case. In

the next section, we will exploit this notion by using this criteria as a foundation for

judging similarity between any two cases.

3.3.2 Building Semantic Signatures
A key problem with relational case knowledge comes at query time, when a query must

be compared to all cases. The problem is that structured cases are difficult and time

consuming to compare. Even with the criteria generated by GSA, structured case

matching entails finding the largest common overlap between two graphs, which as

mentioned before is an NP-Hard problem. With a large, complex case base, a structure

matching algorithm requires significant computational overhead and is likely impractical.

One way to reduce the computational overhead is to use a preprocessing step to filter out

cases that are unlikely to be relevant to the query and thereby reduce the number of calls

to the structural matcher. Gentner and Forbus [1991] describe a system that uses an

efficient literal similarity test to filter out unrelated cases. The disadvantage of this

approach is that it introduces a weaker comparison algorithm that may miss important

similarities. Thus, some cases that the structural matcher finds similar may not be

returned because the weaker algorithm weeded them out.

An alternative strategy is to translate the structural cases into representations that can be

easily and efficiently compared. One representation conducive to efficient comparisons

is a fixed-length vector of floating point numbers. Floating point vectors represent points

 42

in a multidimensional space and can be compared using simple Euclidean distance. The

challenge is thus to translate a case represented by logical assertions into a fixed-length

continuous vector, while preserving as much of the original semantics as possible.

The remainder of this section describes an algorithm for performing such a

transformation using PowerLoom's deductive reasoners and a neural network. The

approach generates signatures for each case which are compact, semantically-rich

floating point representations. Figure 9 illustrates the major steps.

Figure 9: Transformation of a structural case into a floating point
signature.

3.3.2.1 Creating Match Vectors
In the first stage of signature algorithm, PowerLoom performs a structural match between

each case and the match criteria. PowerLoom matches each case by binding variables in

the match criteria to instances in the case. Since it is unlikely that any case will match

the entire match criteria, PowerLoom uses a greedy partial-match strategy where it binds

variables such that the greatest number of bindings can be made. In other words,

PowerLoom finds the greatest overlap between the case and the match criteria.

The result of the PowerLoom match for a given case is a set of clauses from the match

criteria that are satisfied and a set that are not. For example in Figure 9, only two of five

clauses,R2(?X,?V2) and R1(?V2,?V3), are satisfied by the case. By associating a score of

 43

1 for each satisfied clause and a score of 0 for each unsatisfied clause, we obtain a pattern

or footprint for the case within the match criteria. These patterns are essentially fixed-

length binary vectors that represent which clauses in the criteria are satisfied by the given

case. We will subsequently refer to these patterns as match vectors.

3.3.2.2 Neural Network Feature Weighting
The match vectors provide a fixed-length representation that captures the semantics of

each case. What is missing, however, is a measure of importance for each dimension.

Clearly, when comparing two cases, some criteria should be weighed more than others.

For example, the type of mission is likely to be crucial in determining decisive points and

should be weighed more in comparisons than superficial properties such as the names of

the commanders of a unit. Numerous methods have been proposed for feature weighting

in case-based reasoning [Wettschereck, Aha & Mori, 1997]. Most approaches attach a

weight to each feature and compute the match score by summing the weights of the

matched features. Traditionally, effective weights are found through some sort of hill-

climbing search over the weight space. We adopt a similar strategy, but use a neural

network rather than linear combination to compute the match score.

The goal of the neural network learning module is twofold. First, it learns which features

are most relevant for evaluating decisive points and consequently how to weigh them

when computing a match. Second, it computes a compact, semantically-rich

representation that can be easily matched to other cases. The neural network is a standard

3-layer feedforward neural network with sigmoid units in the hidden and output layer.

The input to the network is the match vector for a given case. The output of the network

is the expert's evaluation of that case (a continuous value between 0.0 and 1.0), and the

network is trained using the standard backpropagation algorithm to return the correct

evaluation score for every case in the case base.

Once the network has been trained, it has learned to classify all of the decisive points in

the case-base based on the input patterns within the match criteria. Thus, it has

automatically learned how to weigh the different features in the input when classifying

decisive points. Since the neural network uses a hidden layer of units, it has also learned

to translate the binary input patterns into a lower-dimensional continuous space

 44

represented by the hidden units. The hidden unit activations capture the features of the

input patterns that are important for classifying decisive points. Our strategy is to use

these activations as a semantic representation or semantic signature for each case.

There are several advantages of the neural network semantic signature strategy. First, it

generates a more compact representation for each case, which for large case bases

significantly reduces the match time. In this problem, the neural networks reduced 500

dimensional match vectors to 50 dimensional vectors. Second, neural networks can can

weigh mismatch evidence as well as match evidence. Current linear combination

strategies only propagate positive match evidence from each feature, which in the

decisive point problem is not always valid. For example, two bridge examples may match

exactly, except that the military unit on each bridge belongs to different sides. This

difference should completely change the similarity measure since in one case the bridge

is controlled by friendly forces, and in another case it is controlled by the enemy. It

would be difficult to craft a set of linear feature weights to make such a large distinction

from a single mismatched feature. The neural network strategy can, however, separate

these examples based on the one mismatch by mapping them into different areas of the

hidden unit space.

To summarize, we have developed a methodology for matching structural cases that

builds flat semantic signatures that can be easily matched using Euclidean distance. One

key advantage is match time. While our strategy still requires structure matching, it

significantly reduces the frequency. Ignoring training for feature weighting, a structural

case-based reasoner requires O(CQ) structural matches, where C is the size of the case

base and Q is the number of queries. Our semantic signature approach requires only O(C

+ Q) structural matches. Since queries normally become cases, we've reduced the

number of structural matches from polynomial to linear in the number of queries.

3.3.3 Incorporating Rule Knowledge
The decisive point algorithm uses existing rule knowledge in two important ways. First,

before invoking the case-based reasoner on a given map feature, it explicitly checks if

any existing rule knowledge can infer goodness. If a rule exists that covers the feature, it

foregoes the case-base strategy and uses the rule to assess goodness. An example of this

 45

type of knowledge is the rule: linear features are bad decisive points. All rivers and

roads match this rule and are given poor evaluation scores without querying the case

base.

A second way that the decisive point algorithm uses rule knowledge is in structural case

matching. Recall from the previous section that PowerLoom's partial matcher is used to

match each case into the match criteria. Structural matching entails finding bindings for

variables in the match criteria such that as many clauses are satisfied as possible. When

satisfying a clause, PowerLoom uses any available inference rules to generate a deductive

proof. For example, suppose a clause in the match criteria specifies East(?X,?V1), but

there is no corresponding assertion in the case. Suppose that the case does have the

assertion West(River4,Bridge1). Given the general rule East(X,Y) ⇒ West(Y,X),

PowerLoom can infer East(Bridge1,River4) and satisfy the above clause.

Utilizing rule knowledge in case matching compensates for a lack of cases. In the

previous example, the rule creates a second implicit case from an explicit case. In other

words, there was no case where East(Bridge1,River4) was explicitly asserted, but the

rules allowed PowerLoom to infer one. Experiments in the evaluation section confirm

the importance of this kind of knowledge when cases are limited.

3.4 Evaluation
Identifying good decisive points provides an interesting challenge and knowledge-rich

case-based reasoning appears to be a promising solution. To test this hypothesis, we

participated in an official HPKB evaluation conducted by the Alphatech Corporation.

Alphatech provided expert analysis of 50 decisive point cases over 3 different scenarios

and 9 different missions. The cases were evenly split between positive and negative

examples. Each case was modeled using terms from ontologies produced within HPKB,

which includes a portion of the Cyc knowledge base. To complete each case, we used

background knowledge about each scenario including the geospatial information of all

map features and specific knowledge of each military unit. It is worth mentioning that all

background knowledge was modeled by others in the HPKB community and is thus

independent of our specific reasoner.

 46

For the evaluation, Alphatech provided five different problems. Table 1 summarizes our

performance as determined by Alphatech's military experts. Since our algorithm returns

the top three decisive points for any scenario, Alphatech provided two measures of

performance. The first measures the quality of the best decisive point that we returned

and the second measures the average of the three. The graph shows that in every

problem, we returned a very good decisive point. The lowest "best'' score was 80% in

problem 4. This result is very encouraging and shows that the reasoner recognizes the

best decisive points.

Problem 1 2 3 4 5
Best 100 100 100 80 100

Average 100 100 80 40 95

Table 1: Results from the HPKB evaluation. Scores range from 0 to 100.

Unfortunately, the average scores shows that the system was not as discriminating with

poor decisive points. For example in problem 4, while the system did return the optimal

decisive point, it also returned two decisive points that were judged very poor. From the

evaluation numbers and expert opinions, it is clear that the system is overgeneralizing. It

does not miss the best points, but it does not always reject the bad ones. An obvious

solution to this problem is to provide more negative examples.

 47

Figure 10: Learning curves for different variations of the case-based
reasoner.

To complement the Alphatech evaluation, we ran additional experiments in-house to both

judge performance and measure the utility of the rule-based knowledge. Figure 10 shows

the results of several 10-fold cross validation experiments over the case base with and

without rule knowledge. The learning curves plot the rate at which performance

increases with the size of the case base. The top curve represents the full system with all

available rule knowledge. The middle curve plots performance without knowledge

specific to decisive points such as the fact that rivers are not good decisive points. The

bottom curve plots system performance without domain-general rules such as general

geospatial relationships.

The shape of the curves are somewhat surprising and do not reflect typical machine

learning curves. The most striking feature is that the learning rate actually increases with

experience. There is virtually no difference in performance with case base sizes of 5 to

 48

30 examples, but after 30 the performance grows approximately linearly with the size of

the case base. Unfortunately, we have not been able to come up with a concrete

explanation for the shape of the curves. One possible hypothesis is that they are an

artifact of the cases. It is unclear how representative our case distribution is over the

actual problem distribution.

The results do show a significant advantage to case-based reasoning with rule-based

knowledge. At every level of case knowledge, performance improves with rules, which

supports our hypothesis that the rules compensate for a lack of cases. The knowledge-

poor approaches need more cases to achieve the same level of performance as the

knowledge-rich approach. Interestingly, there was a greater drop off without the general

rules than without the domain specific rules. Since general rules apply to more situations,

their impact is felt more often and thus when they are removed the system suffers a

greater performance hit.

The overall assessment by the military experts is that our approach is the most promising

solution to the decisive point problem to date. The system is currently not strong enough

to serve in real planning efforts, but the experts agree that the currently limiting factor is

the lack of cases, not the technology. Given more cases (especially negative examples)

and additional rule-knowledge, the knowledge-rich case-based reasoner could provide a

valuable military planning tool.

3.5 Conclusions
Determining decisive points is a challenging military problem, where the lack of expert

rules precludes a complete expert system or rule-based solution. Case-based reasoning

offers a promising solution since knowledge is acquired from examples rather than rules.

However, traditional methods are inadequate because they cannot match structured cases

and do not incorporate existing rule knowledge. We addressed each of these challenges

in a new case-based reasoner within the PowerLoom knowledge representation system

that we characterize as knowledge-rich case-based reasoning. The PowerLoom case-

based reasoner combines nearest neighbor, graph search, neural networks, and natural

deduction to learn effective match criteria, perform structural matches, and leverage off

 49

of existing rule-based knowledge. Experiments in the HPKB program show that our

approach is more effective than any other decisive point solution to date.

 50

4 Java-Based Graphical Knowledge Editor

4.1 Overview
Below we describe the PowerLoom knowledge editor (or GUI), a Java-based graphical

client for the PowerLoom Knowledge Representation and Reasoning System. We first

describe the architecture of the PowerLoom GUI, and discuss design issues and tradeoffs.

Next, we present an overview of the GUI, highlighting high-level functionality. We then

present a comprehensive list of the features and capabilities that are currently present in

the GUI. Finally, we conclude with some possible future directions for the GUI.

4.2 Architecture

4.2.1 Client/Server Architecture
In the traditional client/server (a.k.a. 2-tier) model, a “smart” client application

communicates with a “dumb” datastore such as an RDBMS or file system. More

recently, the 3-tier (or “n-tier”) model has become popular, in which a “dumb” client

such as an HTML browser communicates with a “smart” middle tier which contains the

application's business and presentation logic, and which in turn communicates with a

back-end datastore. Likewise, in the 1-tier model, a client and server share the same

process space. An example of a one-tier application is a word processing application

which stores data in a flat file.

The architecture for the PowerLoom GUI most closely resembles the client/server model.

The GUI component is a Swing-based Java client which communicates with a remote

version of the PowerLoom KRRS. Since the GUI does not contain a great deal of

business logic (e.g., it does not know how to do inferencing), it does not directly map

onto the traditional notion of a smart client. Similarly, since PowerLoom is much

“smarter” than a typical DBMS, it does not cleanly map onto a traditional backend server.

However, since the GUI contains the presentation logic, it is more similar to a 2-tier

model than a 3-tier model in which the presentation logic resides on the middle tier.

The GUI has been designed in such a way that it can be “baked-in” with a Java version of

PowerLoom. In this mode, the client runs in the same process as the server, and bypasses

 51

the SOAP communication layer. Although we have not yet experimented with this mode,

it is likely that its use could result in significant performance benefits for standalone

applications.

Communication between the GUI and PowerLoom is done via the XML-based SOAP

protocol. In order to effect communication via SOAP, a Web service layer was built on

top of PowerLoom. This layer provides support for marshaling and unmarshaling of

PowerLoom objects to/from XML, and also provides a PowerLoom API that is accessible

as a web service. The Java client uses JAXM and the Castor framework (see

http://www.castor.org) to support SOAP communication.

The GUI can be launched either from a shell prompt or over the web using Java Web

Start (JWS) technology. With JWS, users are required to do a one-time download and

install of a JWS client application, after which they can launch any fully-functional Java

application over the web. This technology overcomes many of the problems associated

with Java Applets, including their restrictive set of capabilities and browser compatibility

issues.

4.2.2 GUI Design Goals
At the outset of our design effort, our biggest decision was whether to implement the

PowerLoom interface as a Swing GUI or as an HTML-based web application.

Ultimately, we decided that a Swing GUI better suited our needs than a Web application.

In arriving at this decision, we considered the following requirements:

4.2.2.1 Visibility
Knowledge Bases are complex and loosely structured entities. It is often desirable to

simultaneously maintain multiple views of a KB, and to simultaneously perform multiple

complementary task such as browsing, editing, querying, and searching a KB. We feel

that Swing-based applications are superior to HTML-based applications when it comes to

displaying large quantities of complex information. With Swing's MDI (Multiple

Document Interface) mode, many internal frames can be open at the same time within a

single “desktop” frame. Swing also offers a rich set of components and UI mechanisms

which facilitate efficient use of screen real estate. These include the ability to resize,

 52

close, and iconify windows, layout algorithms which are smart about redisplaying

internal components, and components such as collapsible trees, scrollable subpanes,

movable dividers, tabs, etc. In contrast, HTML has no similar MDI capability, and

simulating widgets such as trees can be a cumbersome programming chore.

We designed the GUI to take advantage of Swing's presentation strengths. We used the

MDI mode, so browsers, editors, etc. can coexist on the same desktop. Additionally,

multiple knowledge browsers can be open at the same time to present different views of a

KB. The Knowledge Browser itself consists of multiple collapsible and resizable

subpanes, which in turn are composed of scrollable lists and trees. This allows a “birds-

eye” view of a Powerloom KB, in which many modules, concepts, relations, instances,

propositions, and rules can be displayed at the same time.

4.2.2.2 Navigability
When exploring a KB, it is imperative that a user interface allows easy navigation

between related objects. HTML-based applications are excellent for applications that

require navigation capabilities, since the primary function of a hyperlink is to navigate to

a new HTML page. Implementing navigation in Swing requires a bit more coding effort.

The PowerLoom GUI has extensive navigation capabilities, which are as good or better

than browser based applications. For example, a user may click on a query result to

instantly update the Knowledge Browser to display the selected object. Also, a user can

right-click on a relation or argument in a proposition, and navigate to the clicked-on

object.

4.2.2.3 Responsiveness
For the best possible user experience, a user interface should be highly responsive to a

user's input gestures. This is true in two respects: 1) After initiating a gesture such as a

mouse click or keypress, there should be a minimal delay before the appliction performs

the intended action, and 2) “Power Users” should be able to perform complex tasks with

a minimum number of mouse clicks, key presses, etc. In general, Swing is more

responsive than HTML browsers on both counts: 1) Since a significant amount of cached

state is maintained in a Swing client, there is less need to do network round-trips to

 53

retrieve information, and 2) Swing has many mechanisms to enable efficient control of

an application, including menu accelerators and programmable keymaps that are

associated with components.

The PowerLoom GUI attempts to minimize network round-trips by caching large

amounts of data. For example, when a user points the Knowledge Browser to a module,

a large chunk of the module is retrieved from the server and cached in the client. Hence,

when the user expands a tree in the browser, the GUI will not need to retrieve more data

from the server. Also, the GUI takes full advantage of Swing's ability to control the

application via keyboard input. For example, to create a new instance named newName,

a user needs to simply type the key sequence: CTRL-I newName [RETURN].

4.2.2.4 Context Sensitivity
For any given object that is displayed in a user interface, there is a set of actions that can

be performed on that object. Additionally, the actions that can be performed on an object

depend on where the object is displayed. In a browser-based application, there is only a

single action that can be performed on a displayed object, i.e., the action that is executed

when the object's hyperlink is clicked. In contrast, Swing enables the use of context-

sensitive popup menus. When a user right-clicks on an object, a list of appropriate

actions will be presented in a menu.

Context-sensitive menus are ubiquitous in the PowerLoom GUI. For example, when a

user right-clicks on a concept in the Knowledge Browser, they are presented with the

following list of possible actions:

 Add a new concept

 Edit the concept

 Edit the concept's extension

 Instantiate the concept

 Cut the concept

 Copy the concept

 Paste a concept

 54

 Delete the concept.

4.2.2.5 Editability
Applications that support text editing often need capabilities above and beyond the

baseline capabilities that all text widgets support: cut, copy, and paste. In particular,

applications that allow editing of text with a regular structure such as source code or Lisp

expressions may take advantage of special key bindings which augment basic navigation

and editing capabilities. HTML browsers offer no means of enhancing a browser's basic

text widget. Swing, on the other hand has very powerful text components which allow

keys to be bound to arbitrary actions.

The PowerLoom GUI makes use of Swing's powerful text components by implementing

a full set of Emacs-style keybindings. These keybindings allow a user to perform such

operations as navigating up and down a subexpression hierarchy, selecting entire

subexpressions, and completing incomplete symbols. In addition, matching parenthesis

are automatically highlighted in the GUI's text components.

4.2.2.6 Extensibility
While it is not easy to claim that Swing applications are inherently more extensible than

Web applications, Swing's MDI architecture and pull-down menu framework allows new

features to be added with little disruption to the rest of the application.

With the aid of a GUI design tool such as Sun's Forté, new internal frames can be easily

added to the PowerLoom GUI. We envision that additional tools such as KB Graphers or

other KB visualization or analysis tools could be added to the GUI in the future. Also, it

is conceivable that the GUI code could be used as a basis for a more specific application.

The application would have its own application-specific menus and windows, but would

retain the general-purpose browsing, querying, and editing tools for direct manipulation

of the knowledge base. It should also be noted that the implementation of PowerLoom's

Web service interface should facilitate rapid integration of applications with PowerLoom.

 55

4.3 GUI Overview
The PowerLoom GUI is shown in Figure 11. The main application frame consists of

pull-down menus, a toolbar, and a status bar.

Figure 11: The PowerLoom GUI

The application has the following menus: KB, Edit, Objects, Query, View, and Navigate.

These menus are described as follows:

 KB - The KB menu contains menu items for connecting to a server, loading, saving,

and clearing KBs, and opening browser and console windows.

 56

 Edit - The Edit menu contains items for cutting, copying, pasting, and deleting, and

also contains an item which opens a preferences dialog.

 Objects - The Objects menu contains items for opening editors on various KB

objects, including modules, concepts, relations, instances, and propositions. This

menu also contains an item to edit the currently selected object.

 Query - The Query menu contains items for querying the KB, searching the KB, and

editing a relation's extension.

 View - The View menu contains various items for updating the appearance of the

application, including a refresh item to bring the GUI up-to-date with the state of the

KB on the server, and menu items for showing/hiding the application's toolbar and

status bar. This menu also contains items for changing the application's font – the

demo theme changes all fonts to a large bold font suitable for demo presentations.

 Navigate - The Navigate menu contains items for navigating backward and forward

in a browser's selection history.

 Window - The Window menu contains a list of the currently open windows on the

desktop. Selecting a window brings the window to the top of the window stack, and if

the window is iconified, it is de-iconified.

 Help – The help menu contains an item to open an HTML help browser, and an item

to open an About box which contains information about the PowerLoom GUI.

Most menu items have accelerator keys that allow an item to be executed by a

combination of keystrokes. The detailed operation of each of the menu items will be

elaborated further in the GUI Features section.

The toolbar contains several buttons which provide shortcuts to menu items. There are

currently toolbar buttons for cutting, copying, pasting, deleting, editing an object, and

opening a query dialog. The toolbar may be undocked from its default position by

dragging it anywhere on the desktop. It may also be hidden by selecting the View ->

Hide Toolbar menu item.

The status bar at the bottom of the application contains information on the current status

of the application. The status bar is divided into two sections. The leftmost section

 57

displays the last module that was selected by a user. The application keeps track of the

current module in order to provide continuity between operations. For example, if a user

opens a browser and browses the AIRCRAFT-KB, and then opens a query dialog, it

makes sense for the query dialog to use the AIRCRAFT-KB module instead of some

other module.

The rightmost section of the status bar contains messages that pertain to the current state

of the application. For example, if a user selects a concept and then clicks the cut toolbar

button, a message will appear in the rightmost status bar prompting the user to select

another concept and perform a paste action. The status bar may be hidden by selecting

the View -> Hide Status Bar menu item.

Figure 11 shows a few internal frames that are open. The function of each frame is

identified in the frame's title bar, and each type of frame has a unique icon in it's upper

left-hand corner. In this example, the three open frames are used to browse the KB,

query the KB, and edit an instance, respectively.

A user typically follows a workflow cycle similar to the following sequence:

1. The user launches the GUI by clicking on a hyperlink, executing a shell command, or

clicking on a desktop icon.

2. The GUI is loaded on the user's machine. If the GUI was launched via JWS, JWS

may need to download the entire application or updates to the application before

execution begins.

3. The GUI reads a preferences file stored in a default location on the user's local

machine. If this is the first time the application is being executed, a default

preferences file is used. The preferences file includes among other things the

PowerLoom server that was last accessed.

4. If the preferences file contains the last-accessed server, it attempts to connect to the

server and query the server for a description of the server's capabilities. If connection

is successful, a browser window will open displaying the modules that are currently

loaded in the server instance.

 58

5. The user selects any KB files (s)he wishes to load, and instructs the server to load the

file.

6. The user performs some browsing, querying, and editing of the loaded KB.

7. If any changes were made, the user saves the KB.

8. The user repeats steps 5-7 as needed, and then exits the application.

4.4 GUI Features
This section provides a detailed description of the features that are available in the GUI

application. We describe general application-wide functionality as well as the

functionality of specific components.

4.4.1 Connect to Server
The first time the GUI is started, it will not attempt to connect to any server. To establish

a server connection, the user must select the KB -> Connect to Server menu

item. This will open a dialog prompting for a host name and port. After the user enters

this information, a connection will be attempted. If the connection is successful, the

server information will be stored in the preferences file and used next time the application

starts up.

4.4.2 Edit Preferences
A preferences dialog can be opened by selecting the Edit -> Edit Preferences

menu item. Currently, the only preference that a user can edit is whether or not open a

browser when the application is started. The dialog contains a checkbox asking whether

or not the preferences should be saved. If the checkbox is not checked, the preferences

will remain in effect for the duration of the current session, but will not be in effect when

the application is restarted.

4.4.3 KB Load/Save
In its standard configuration, PowerLoom stores knowledge bases via flat files. The GUI

has two options for loading and saving KB files. The first option is to load/save files

using the local file system, i.e., the file system that is immediately accessible to the user.

 59

This option only works if the PowerLoom server has access to the same file system as the

user. For example, this might be true if the server was executing on the same LAN as the

user's machine. The second option is to load/save files using the file system that is

visible to the PowerLoom server. This option would be used in situations where the user

is executing the client on a machine that is not immediately accessible to the server, e.g.,

over the Internet. Since there are significant security risks with this option, this option is

disabled by default. It can be enabled by setting a flag on the server indicating that

remote file browsing is permissible. In order for this feature to be usable in practice, we

would have to significantly enhance the security capabilities of the PowerLoom server

and the GUI.

4.4.4 Browsing

4.4.4.1 Overview
The knowledge browser window, shown in Figure 12, can be opened by selecting the KB

-> Browse menu item or typing CTRL-B. The browser provides a visual overview of

all knowledge in the KB, and is capable of launching specialized tools such as editors,

search dialogs, etc.

 60

Figure 12: Knowledge Browser

The browser consists of several subpanes which we refer to as navigation panes. Each

navigation pane consists of a title pane, a toolbar, and a content pane. The title pane

contains a title indicating what is displayed in the content pane. The toolbar consists of

zero or more buttons which perform actions relevant to the navigation pane. Currently,

two toolbar buttons are present: Add and Search. Add adds an object associated with the

type of navigation pane, and Search searches for objects associated with the type of

navigation pane. The content pane contains the actual knowledge to be displayed, such

as a list of instances or propositions.

There is one navigation pane for each type of KB object: Modules, Concepts, Relations,

Instances, Rules, and Propositions. Each internal pane is resizable by dragging the

movable divider between the panes. Panes may be hidden completely by clicking the

 61

“collapse” arrow on the adjacent divider. Clicking the “expand” arrow will unhide the

pane.

4.4.4.2 Viewing
Navigation panes employ several visual cues to enhance the identifiability of object

attributes. Object types are indicated by an icon to the left of the object's name. For

example, modules are represented by a blue M, concepts by a red C, etc. The status of

propositions is also indicated visually. An Italicized proposition indicates that the

proposition was derived instead of asserted. Grey propositions indicate that their truth

value is a default value instead of a strict value.

The main method for filling the contents of a navigation pane is to select some object in a

navigation pane that is to the left or above it. This is discussed in more detail in the

section below. However, in some cases, it is possible to modify the contents of a

navigation pane without performing a selection. For example, in the instance navigation

pane, it is possible to show derived or inherited instances by right-clicking on the

instance list and selecting an appropriate menu item. Similarly, the relation navigation

pane can toggle between direct or inherited relations. Propositions and rules are by

default displayed according to the module that is currently selected. However, the

contents of the proposition or rule navigation pane can be updated by selecting a more

specific module in the View From Module combobox contained in the navigation pane's

title bar.

4.4.4.3 Selection
When the browser is initially opened, a tree of modules is displayed in the module

navigation pane, and all other navigation panes are empty. When a module is selected,

the remaining subpanes are populated with knowledge that is contained in that module.

Similarly, selecting a concept in the concept navigation pane populates the relation,

proposition, and instance panes with knowledge that is relevant to the selected concept.

In general, selecting an object in a given navigation pane may affect the contents of

navigation panes to the right and/or below it. More specifically, the rules for object

selection are as follows:

 62

 Selecting a module populates the concept, relation, and instance subpanes with

knowledge contained in the module.

 Selecting a concept populates the relation subpane with relations that use the concept

as a domain type, and populates the instance subpane with the concept's extension.

The proposition and rule subpanes are populated with propositions and rules

associated with the concept.

 Selecting a relation populates the proposition and rule subpanes with propositions and

rules associated with the relation.

 Selecting an instance with no selected relation populates the proposition subpane with

propositions that refer to the selected instance.

 Selecting an instance and a relation populates the proposition subpane with

propositions that contain the relation as a predicate, and the instance as an argument.

 De-selecting an object will update the state of the browser appropriately. For

example, after selecting a module and a concept, deselecting the concept will refresh

the concept, relation, instance, proposition and rule subpanes to display the

knowledge contained in the selected module.

The title pane in each navigation pane displays a description of the source of the

subpane's contents. For example, if relation the relation WINGSPAN was selected, and

the instance AGM-130 was selected, the proposition subpane would contain the title

“Propositions for WINGSPAN and AGM-130”.

Each selection event is recorded in a selection history which can be rolled back and

forward. For example, assume user selects the AIRCRAFT-KB module and then selects

the GUIDANCE-TYPE concept. If the user then selects the Navigate -> Back menu

item, the selection history will be rolled back so that only AIRCRAFT-KB is selected. If

the user then selects Navigate -> Forward, the selection history will be rolled

forward to its original state so that both AIRCRAFT-KB and GUIDANCE-TYPE are

selected.

 63

4.4.4.4 Navigation
Knowledge can be explored by expanding and collapsing nodes in hierarchical navigation

panes such as the concept and module navigation panes. If a tree or list is not fully

visible, the user may use the scrollbar on the navigation pane's righthand side to scroll

through the contents of the pane. Detailed views of objects such as concepts and

relations can be obtained by right-clicking the object and selecting the Edit menu item.

To navigate to the constituent of a proposition, the user can right-click the constituent and

then select the Navigate to... menu item. For example, right-clicking on the GUIDANCE

argument in the proposition (NTH-DOMAIN GUIDANCE 1 GUIDANCE-TYPE)

presents a popup menu which displays (among other items) the item Navigate to

GUIDANCE. Selecting this menu item will cause the browser to display and select the

GUIDANCE relation.

Actions external to the browser may also update the browser's contents. For example,

clicking on an instance in a list of query results will cause the browser to navigate to the

selected instance.

4.4.4.5 Actions
Right-clicking inside the browser will present a menu of actions that is relevant to the

subpane that contains the mouse pointer. The list of items will depend on whether the

mouse is over a specific item or if it is over the background of the subpane's list or tree.

For example, when the mouse is over a specific concept, the menu will contain items for

cutting, pasting, instantiating, etc., but when the mouse is over the background of the

concept's tree, the only menu item presented will be to add a new concept.

The set of actions for each subpane that is available for each subpane is as follows:

 Module - Add Module, Edit Module, Load (Local/Remote), Save

(Local/Remote), Clear, Copy.

 Concept - Add Concept, Edit Concept, Edit Extension,

Instantiate, Cut, Copy, Paste, Delete. If multiple concepts are selected,

selecting Create New Concept from the background menu will create a concept

that contains the selected concepts as parents.

 64

 Relation - Add Relation, Edit Relation, Edit Extension, Copy,

Delete, Show Inherited/Direct Relations.

 Instance - Add Instance, Edit Instance, Copy, Delete, Show

Direct/Derived Instances.

 Propositions - Add Proposition, Edit Proposition, Copy, Delete,

Navigate to Constituent, Edit Constituent.

 Rules - Add Rule, Edit Rule, Copy, Delete, Navigate to

Constituent, Edit Constituent .

4.4.5 Editing/Viewing

4.4.5.1 Overview
Objects may be edited by right-clicking the object and selecting the Edit item menu item

in the popup menu. Alternatively, an object may be selected, and then the Objects ->

Edit Object menu item can be selected, or the edit toolbar button can be pressed. Object

editors do double-duty as object viewers, since all relevant information is present in the

editor.

There are several common user actions that are available in edit dialogs. For example,

hitting return while the cursor is positioned in the name field of the editor commits the

concept. Most editors contain commit and cancel buttons at the bottom which can be

used to either commit or abort edits. Lists of items commonly have a + and – button at

the top of the lists, which respectively mean add a new item, and delete the selected item.

When the + button is pressed, either a chooser dialog (see the Choosers section) or a

specialized editor will be opened. Like the browser, list items can be right-clicked to

display a list of possible actions. For example, a superconcept can be clicked in a

concept editor to immediately edit the concept's parent.

 65

Figure 13: Instance Editor

Each type of object has a specialized editor. For example, an instance editor is shown in

Figure 13. There are separate editors for modules, concepts, relations, instances, and

propositions/rules, which are described in turn below.

 66

4.4.5.2 Module Editor
The module editor contains a number of fields and components used to enter information

relevant for a new or existing module. Examples of values that can be edited are a

module's name, a module's documentation, and a module's includes list.

4.4.5.3 Concept Editor
The concept editor allows editing of concept attributes such as a concept's supertypes, its

name, its associated propositions, etc. In addition to the inherent attributes of a concept,

all relations which have the concept as a domain type are displayed and may be edited.

Clicking the + button above the relation list opens a new relation editor, with default

values filled in. Similarly, clicking the + button above the proposition list opens a

proposition editor.

4.4.5.4 Relation Editor
The relation editor allows the user to input a list of variables and types for the relation's

arguments, and allows the user to set various attributes for a relation, such as whether the

relation is closed, functional, etc. Like the concept editor, propositions and rules

associated with the relation can be edited.

4.4.5.5 Instance Editor
The instance editor allows the user to input an instance's name, documentation, and

associated propositions. If a proposition uses the relation image-url, an image will be

retrieved from the server and presented in the editor window.

4.4.5.6 Proposition editor
The proposition editor, shown in Figure 14, consists of a text field for entering the

proposition, and a set of buttons for performing actions on the proposition. The buttons

allow a user to assert, deny, or retract the typed proposition. There are several text-based

facilities which support efficient editing of propositions. First, the editor supports many

Emacs-style keybindings which facilitate editing of lisp-like expressions, including

selecting entire parenthesis-delimited subexpressions, jumping backward and forward

over subexpressions, and navigating up and down expression trees.

 67

Figure 14: Proposition Editor

In addition to Emacs keybindings, the proposition editor has a matching parenthesis

highlighter. When the cursor is placed before a left parenthesis, the matching right

parenthesis is is highlighted, and when the cursor is placed after a right parenthesis, the

matching left parenthesis is highlighted.

The proposition editor also has support for symbol completion. The GUI uses a

predictive backtracking parser to analyze partial input of propositions. Based on the

analysis, the parser is able to recommend appropriate completions. For example, if the

user types (f and then selects the completion action, the parser will recommend a list of

completions including the forall symbol and all concepts and relations that begin with

the letter f.

4.4.6 Choosers
In a number of situations, an object of a specific type must be selected. For example,

when selecting a superconcept in a concept editor, the user should be presented with a list

of existing concepts. In these cases, a chooser dialog is presented to the user which

displays a filterable list of candidate objects. As the user types a name of the object in

the name text field, the list of objects is filtered so that only objects which begin with the

typed prefix are displayed. Choosers are available for modules, concept, instances, and

relations. A variable chooser allows the user to type a variable name and select a type

from a concept from a list.

 68

Figure 15: Extension Editor

4.4.7 Extension Editor
The extension editor, shown in Figure 15, allows editing of a concept or relation's

extension, and can be opened by right-clicking on a concept or relation in the browser or

by selecting the Query -> Edit Extension menu item. The extension editor presents

a relation's extension as a list of tuples in table format. The user may add new tuples by

typing names of instances at the bottom of the table, and may alter existing tuples but

double-clicking on a table cell and typing in a new value. Instance name completion is

available while typing instance names by typing CTRL – [right arrow]. A user

may choose to abort the edited extension by clicking the Cancel button. If the user

clicks the Commit button, the relation's extension will be updated by asserting and

retracting appropriate propositions.

 69

Figure 16: Query Dialog

 70

4.4.8 Query/Ask
The Query dialog, shown in Figure 16, can be opened by selecting the Query ->

Query menu item, typing CTRL-Q or by pressing the query toolbar button. The Query

dialog consists of a text area for typing the query, a results table for displaying the results

of the query, a query list for selecting pre-saved queries, and an options subpane for

configuring various query parameters.

 The query input pane supports features similar to that of the proposition editor, including

Emacs key bindings, parenthesis matching, and completion. Queries can be executed by

hitting CTRL-[RETURN] or by clicking on the Execute button at the bottom of the

dialog. After a query has executed, results will be displayed in the results table or a “No

results found” indicator will flash in the results area. The column headers for the results

will display the corresponding free variables in the query. Results may be sorted by

clicking on a column header. Doing so will sort the results by using the clicked column

as an index. Users may toggle ascending/descending sort order by clicking the header

multiple times.

If the query contains no free variables, it is effectively an ASK operation (as opposed to a

RETRIEVE operation). In this case, the result will be a truth value, and the column

header will be labeled TRUTH-VALUE. If the query is the result of a partial retrieve

operation, an additional column containing the match score will be displayed.

If the user clicks on a cell in the results table, the topmost browser will be updated to

display the selected item. For cases where a partial query was performed, the user may

right-click on a query result and select the “Show Explanation” menu item. Selecting this

will present an HTML explanation in a separate window. The displayed explanation may

contain hyperlinked objects. Clicking on a hyperlinked object will update the topmost

browser to display the object.

Users may save frequently-executed queries in a query list by clicking the Save button at

the top of the options panel. After clicking save, they will be prompted for a query name.

Saved queries will be stored in the preferences file and are represented as XML. Saved

queries are stored in the combobox to the left of the save button. Selection of a saved

query will prefill the Query dialog with the query and all saved parameters.

 71

All PowerLoom query options are available in the options dialog. These options

currently include the query's timeout, moveout, maximum number of unknowns,

minimum score, and match mode.

Figure 17: Search Dialog

4.4.9 Search
Users may search for objects in the KB by entering strings which match the name of the

object. A search dialog as shown in Figure 17 can be opened by selecting the Query ->

Search menu item, typing CTRL-F, or by pushing a search toolbar button inside the

browser. If the user pushes a search toolbar button inside a navigation pane, the search

dialog will be configured to search for objects associated with the type of object

 72

displayed in the pane. For example pushing the search button inside the concept

navigation pane will configure the search dialog to look for concept objects.

Searches may be constrained in several ways. First, the type of module may be specified

or the user may specify that the search should be across all modules. Second, the types of

objects to be searched is configurable. For example, users may search for concepts and

instances, instances only, etc. Finally, users may specify that the objects name must

match the beginning or end of the search string, or exactly match the search string.

When the user executes the search by hitting return or selecting the OK button, a list of

results is presented. These results are presented in table format, where one column is the

name of the retrieved object, another column contains the module that the object resides

in, and the final column specifies the type of the object (i.e., concept, instance, etc). As is

the case with query results, clicking on a search result item will update the topmost

browser to display the selected object.

4.4.10 Console
The console window, as shown in, can be opened by selecting the KB -> Open

PowerLoom Console menu item or typing CTRL-P. This opens an internal window,

which allows PowerLoom commands to be typed directly and sent to the PowerLoom

server. The response generated by PowerLoom is sent back to the GUI and printed below

the prompt. This functionality is similar to that of a LISP listener.

 73

Figure 18: PowerLoom Console

4.4.11 Cut/Copy/Paste/Delete
The PowerLoom GUI supports Cut, Copy, Paste, and Delete operations. These

operations can be used to edit text, and in some cases they can be used to edit objects in

list or trees. For example, the concept hierarchy can be edited within the browser by

selecting a concept, executing a cut operation, selecting another concept, and then

executing paste. This sequence of operations will delete the concept from it's original

position in the hierarchy, and make it a subconcept of the concept that was selected when

the paste operation was performed.

We have implemented a robust data transfer framework that is capable of recognizing the

types of objects that are being transferred, and the types of potential transfer sources and

destinations. This allows the application to prohibit nonsensical data transfers such as

cutting a concept in a concept navigation pane and then trying to paste it into a module

pane. It also allows data transfer operations to be context sensitive. For example,

cutting a concept in a concept navigation pane means that a move operation is being

initiated, while cutting a concept in a concept editor's superconcept list means that the

concept should be removed from the list. Additionally, copying an object such as a

concept, then executing a paste inside a text window will paste the name of the object.

 74

As one would expect, text may be cut/copied/pasted between the GUI and outside

applications.

4.5 Future Work
There are many areas that are good candidates for future development efforts, including:

4.5.1 Large KBs
Currently, when a module is selected, the GUI attempts to retrieve all concepts, relations,

and instances that are contained in the module. For large knowledge bases, this is clearly

infeasible. Some knowledge bases, such as Cyc, contain millions of instances and

assertions. We need to develop more sophisticated caching strategies to flush old or

rarely-used knowledge from the GUI. Also, we need to develop methods for retrieving

fixed-sized chunks of a KB at a time. For example, rather than presenting a list of all

instances in a module, we might initially present a fixed number N instances, and display

a button labeled “More instances...” which will retrieve N more instances. A similar

strategy can be employed for tree representations of hierarchies. At first, the topmost

objects in the hierarchy can be retrieved, and as the user expands the tree, knowledge can

be retrieved on demand.

4.5.2 Drag/Drop
Adding a drag and drop capability would make ontology editing easier than is currently

possible. For example, one concept could be dragged on top of another to move the

object from its current position. We believe that the existing data transfer framework

could be leveraged to implement a robust drag and drop facility.

4.5.3 Scrapbook
In creating and editing ontologies, it is sometimes desirable to maintain heterogeneous

scraps of information. We envision a scrapbook feature where text and objects of various

types could be dragged and arranged visually.

 75

4.5.4 Instance cloning
It is often useful to create new instances that are similar to existing instances. We would

like to implement a cloning facility in which a wizard-like series of dialogs would step

the user through the process of copying information from one object to a new object. For

example, the dialogs would prompt the user for propositions to transfer from the old

instance to the new instance, and allow the user to modify the propositions in the process

of transferring them.

4.5.5 Security
There is virtually no security implementation in the PowerLoom GUI. The GUI client

assumes that is communicating with a trusted host over a secure network. Similarly, the

PowerLoom server assumes that it is communicating with a friendly client that has full

access to the server. In the future, we need to add security mechanisms which allow

clients to be authenticated, and resources on the server to be made accessible to

authorized users only. In addition, we need to implement encryption mechanisms so that

that clear text is not sent over insecure networks, potentially compromising sensitive data.

4.5.6 Multiple users
Although the client/server model allows multiple GUI clients to concurrently share the

same server, there is very weak support for synchronizing clients and ensuring that users

don't accidentally step on each other. We need to improve our infrastructure to handle

notification of KB updates, add support for transactions and KB locking, and improve our

caching mechanisms to detect when the GUI state is out of sync with respect to the

server.

 76

5 References

J.F. Allen. Toward a general theory of action and time 1984. Artificial Intelligence,

23(2):123--154, 1984.

J. Blythe, Y. Gil, H. Chalupsky, and R.M. MacGregor 2000. Supporting translation

among planning agents. Internal Project Report, USC Information Sciences Institute,

2000.

H. Chalupsky and R.M. MacGregor 1999. STELLA – a Lisp-like language for symbolic

programming with delivery in Common-Lisp, C++ and Java. In Proceedings of the 1999

Lisp User Group Meeting, Berkeley, CA, Franz. Inc. (see also

http://www.isi.edu/isd/LOOM/Stella/index.html).

V.K. Chaudhri, A. Farquhar, R. Fikes, P.D. Karp, and J.P. Rice 1998. OKBC: A

programmatic foundation for knowledge base interoperability. In Proceedings of the 15th

National Conference on Artificial Intelligence (AAAI-98) and of the 10th Conference on

Innovative Applications of Artificial Intelligence (IAAI-98), pages 600--607, Menlo Park,

July 26--30 1998. AAAI Press.

P.R. Cohen, R. Schrag, E. Jones, A. Pease, A. Lin, B. Starr, D. Easter, D. Gunning, and

M. Burke 1998. The DARPA High Performance Knowledge Bases project. Artificial

Intelligence Magazine, 19(4):25--49, 1998.

M.T. Cox and M.M. Veloso 1997. Controlling for unexpected goals when planning in a

mixed-initiative setting. In E. Costa and A. Cardoso, editors, Proceedings of the Eighth

Portuguese Conference on Artificial Intelligence (EPIA-97), volume 1323 of LNAI,

pages 309--318, Berlin, 1997. Springer.

Emde, W. 1996. Relational instance-based learning In Proceedings of the 13th

International Conference on Machine Learning.

R. Fikes, A. Farquhar, and J. Rice 1997. Tools for assembling modular ontologies in

Ontolingua. In Proceedings of the 14th National Conference on Artificial Intelligence

 77

and 9th Innovative Applications of Artificial Intelligence Conference (AAAI-97/IAAI-97),

pages 436--441, Menlo Park, July 27--31 1997. AAAI Press.

G. Frank, A. Farquhar, and R. Fikes 1999. Building a large knowledge base from a

structured source. IEEE Intelligent Systems, 14(1):47--54, 1999.

Gebhardt, F. 1997. Survey on structure-based case retrieval. The Knowledge Engineering

Review, 12(1), 41--58.

M.R. Genesereth 1991. Knowledge interchange format. In J. Allen, R. Fikes, and E.

Sandewall, editors, Proceedings of the 2nd International Conference on Principles of

Knowledge Representation and Reasoning, pages 599--600, San Mateo, CA, USA, April

1991. Morgan Kaufmann Publishers.

Gentner, D. and Forbus, K. 1991. MAC/FAC: A model of similarity-based retrieval. In

Proceedings of the Cognitive Science Society.

Y. Gil 1994. Knowledge refinement in a reflective architecture. In Proceedings of the

12th National Conference on Artificial Intelligence. Volume 1, pages 520--526, Menlo

Park, CA, USA, July 31--August 4 1994. AAAI Press.

T.R. Gruber 1993. A translation approach to portable ontology specifications. Knowledge

Aquisition, 5(2):199--220, 1993.

E.H. Hovy 1998. Combining and standardizing large-scale, practical ontologies for

machine translation and other uses. In Proceedings of the First International Conference

on Language Resources and Evaluation (LREC), Granada, Spain, 1998.

Jones, E. 1999. HPKB course of action challenge problem specification, Alphatech Inc.

K. Knight and S.K. Luk 1994. Building a large-scale knowledge base for machine

translation. In Proceedings of the 12th National Conference on Artificial Intelligence.

Volume 1, pages 773--778, Menlo Park, CA, 1994. AAAI Press.

Kolodner, J. L. 1993. Case-Based Reasoning. Morgan Kaufmann.

D. Lenat 1995. CYC: A Large Scale Investment in Knowledge Infrastructure.

Communications of the ACM, 38(11):32--38, November 1995.

 78

R.M. MacGregor 1991. Inside the LOOM description classifier. ACM SIGART Bulletin,

2(3):70--76, 1991.

D.L. McGuinness, R.E. Fikes, J. Rice, and S. Wilder 2000. An environment for merging

and testing large ontologies. In A.G. Cohn, F. Giunchiglia, and B. Selman, editors,

Principles of Knowledge Representation and Reasoning: Proceedings of the Seventh

International Conference (KR2000), San Francisco, CA, 2000. Morgan Kaufmann.

A. Mulvehill and S. Christey 1995. ForMAT -- a Force Management and Analysis Tool.

MITRE Corporation, Bedford, MA, 1995.

Pazzani, M., Mani, S., and Shankle, W. R. 1997. Beyond concise and colorful: Learning

intelligible rules. In Proceedings of the Third International Conference on Knowledge

Discovery and Data Mining, 235--238.

S. C. Shapiro and W. J. Rapaport 1992. The SNePS family. Computers & Mathematics

with Applications, 23(2--5):243--275, January--March 1992.

D.C. Smith 1990. Plisp User's Manual. Apple Computer, August 1990.

J. F. Sowa 1992. Conceptual graphs as a universal knowledge representation. In Fritz

Lehmann, editor, Semantic Networks in Artificial Intelligence, pages 75--93. Pergamon

Press, Oxford, 1992.

W. Swartout, R. Patil, K. Knight and T. Russ. 1996. Towards districuted use of large-

scale ontologies. In Proceedings of the Tenth Knowledge Acquisition for Knowledge-

Based Systems Workshop. 1996

L. Tesler, H. Enea, and D.C. Smith 1973. The Lisp70 pattern matching system. In Nils J.

Nilsson, editor, Proceedings of the 3rd International Joint Conference on Artificial

Intelligence, pages 671--676, Standford, CA, August 1973. William Kaufmann.

A. Valente, T.A. Russ, R.M. MacGregor, and W.R. Swartout 1999. Building and

(re)using an ontology of air campaign planning. IEEE Intelligent Systems, 14(1):27--36,

1999.

 79

M. Veloso, J. Carbonell, A. Pérez, D. Borrajo, E. Fink, and J. Blythe 1995. Integrating

planning and learning. Journal of Experimental and Theoretical Artificial Intelligence,

7(1), 1995.

M.M. Veloso 1994. Planning and learning by analogical reasoning, volume 886 of

LNAI. Springer, New York, NY, 1994.

Wettschereck, D., Aha, D. W., and Mohri, T. 1997. A review and empirical evaluation of

feature weighting methods for a class of lazy learning algorithms. Artificial Intelligence

Review, 11, 273--314.

